Answer:
The four resonance structures of the phenoxide ion are shown in the image attached
The conjugate base of cyclohexanol has only one resonance contributor, while
the conjugate base of phenol has four resonance contributors.
Explanation:
In organic chemistry, it is known that structures are more stable if they possess more resonance contributors. The greater the number of contributing canonical structures, the more stable the organic specie. Since the phenoxide ion has four contributing canonical structures, it is quite much more stable than cyclohexanol having only one contributing structure to its conjugate base. Hence the PKa(acid dissociation constant) of phenol is lesser than that of cyclohexanol. The conjugate base of phenol is stabilized by resonance.
2H2O=2H2+O2
37.4g H2O(1 mol/18.02)=2.07547 mol H2O
PV=nRT
(1.30)(V)=(2.07547)(.0821)(297)
Vwater=38.92898L
38.92898L (1 mol O2/2 mol H2O)=19.46449L O2 gas
The classic Periodic Table<span> organizes the chemical </span>elements<span> according to the </span>number of<span> protons that each has in its atomic nucleus. Hope this helped :)</span>