<span>1)false a in chemical equilibrium concentration of reactant is equal to concentration of product
2)as here they said heat is added in product side means its endothermic reaction and in endothermic reaction on increasing temp. equilibrium shift towards forward direction so its true
3) B)as here mole are equal in reactant and product side that is 2 and if we increase pressure equilibrium shift in dat direction where no. of moles are less and here mole are equal so it will remain unaffected</span>
Answer:
The given statement - The main criterion for sigma bond formation is that the two bonded atoms have valence orbitals with lobes that point directly at each other along the line between the two nuclei , is <u>True.</u>
Explanation:
The above statement is correct , because the sigma bond is produced by the head on overlapping, the orbitals should all point in the same direction.
<u>SIGMA BONDS -</u> Sigma bonds (bonds) are the strongest type of covalent chemical bond in chemistry. They're made up of atomic orbitals that collide head-on. For diatomic molecules, sigma bonding is best characterized using the language and tools of symmetry groups.
Head-on overlapping of atomic orbitals produces sigma bonds. The concept of sigma bonding is expanded to include bonding interactions where a single lobe of one orbital overlaps with a single lobe of another. Propane, for example, is made up of ten sigma bonds, one for each of the two CC bonds and one for each of the eight CH bonds.
Hence , the answer is true .
The molar concentration of the nitric acid solution was 0.6666 mol/L.
<em>Balanced equation</em>: KOH + HNO_3 → KNO_3 + H_2O
<em>Moles of KOH</em>: 32.33 mL KOH × (1.031 mmol KOH /1 mL KOH)
= 33.33 mmol KOH
<em>Moles of HNO_3</em>: 33.33 mmol KOH× (1 mmol HNO_3/1 mmol KOH)
= 33.33 mmol HNO_3
<em>Concentration of KOH</em>: <em>c </em>= "moles"/"litres" = 33.33 mmol/50.00 mL
= 0.6666 mol/L