1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
2 years ago
12

This object is located 13.0 cm to the left of the lens and the image forms at 20.8 cm to the right of the lens.

Physics
2 answers:
Alina [70]2 years ago
6 0

Answer:

0.125 cm

Explanation:

1/f = 1/d¡ + 1/d。

Find the focal point

(13.0^-1 + 20.8^-1) = 0.125 m

Focal point = 0.125 m  

Nady [450]2 years ago
3 0

Answer:

The focal point is 0.125 m  

You might be interested in
If two swimmers compete in a race, does the faster swimmer develop more power?
valkas [14]
Power is equal to energy per unit time. In this case, power is proportional to energy while is inversely proportional to time,on the other hand. Given the two swimmers exerts same amount of energy but the faster swimmer just does things in faster time, then the faster swimmer should develop more power from shorter time
7 0
3 years ago
12. A runner at the start of a race generates 250 W of power as he accelerates to 5 m/s. If the runner has a mass of
Margaret [11]
1/2 m/s2
30 Na




I hope this helps!
4 0
3 years ago
A ball, which has a mass of 1.25 kg, is thrown straight up from the top of a building 225 meters tall with a velocity of 52.0 m/
Elena-2011 [213]

First we will find the speed of the ball just before it will hit the floor

so in order to find the speed of the cart we will first use energy conservation

KE_i + PE_i = KE_f + PE_f

\frac{1}{2}mv_i^2 + mgh = \frac{1}{2}mv_f^2 + 0

\frac{1}{2}(1.25)(52)^2 + 1.25(9.8)(225) = \frac{1}{2}(1.25)v_f^2

So by solving above equation we will have

v_f = 84.3 m/s

now in order to find the momentum we can use

P = mv

P = 1.25 \times 84.3

P = 105.4 kg m/s

6 0
2 years ago
Why are you more likely to get a concussion when hit by a field hockey ball than a
Aleksandr-060686 [28]

Answer:

because it can be hard

Explanation:

I said that because they be on bed rest

6 0
3 years ago
An iron wire has a cross-sectional area equal to 5.00×10⁻⁶ m² . Carry out the following steps to determine the drift speed of th
Doss [256]
  1. In mass, there are 55.85 × 10⁻³ kg/mol in in 1 mole of iron.
  2. The molar density of iron is equal to 1.41 × 10⁵ mol/m³.
  3. The density of iron atoms is equal to 8.49 × 10²⁸ atoms/m³.
  4. The number density of conduction electrons is equal to 1.70 × 10²⁹ conduction electrons/m³.
  5. The drift speed of conduction electrons is equal to 2.21 × 10⁻⁴ m/s.

<h3>How to calculate the drift speed of the conduction electrons?</h3>

Mathematically, the drift speed of the conduction electrons can be calculated by using this formula:

V = (m × σ × V)/ρ × e × f × l)

V = I/(n × A × Q)

Where:

  • U represents the drift speed of the conduction electrons, in m/s.
  • m represents the molecular mass of the metal, in kg.
  • e represents the elementary charge, in C.
  • f represents the number of free electrons per atom.
  • σ represents the electric conductivity of the medium at a particular temperature in S/m.
  • ρ represents the density of the conductor, in kg/m³.
  • ℓ represents the length of the conductor, in m.
  • ΔV represents the voltage applied or potential difference across the conductor in V.

<h3>How many kilograms are there in 1 mole of iron? </h3>

Molar mass of iron = 55.85 g/mol.

In Kilograms, we have:

Mass = 55.85 × 1/1000

Mass = 55.85 × 10⁻³ kg/mol.

For the molar density of iron, we have:

Molar density = density/molar mass

Molar density = 7874/0.056

Molar density = 1.41 × 10⁵ mol/m³.

For the density of iron atoms, we have:

Density of iron atoms = Avogadro's constant × molar density

Density of iron atoms = 6.023 × 10²³ × 1.406 × 10⁵

Density of iron atoms = 8.49 × 10²⁸ atoms/m³.

For the number density of conduction electrons, we have:

Fe ---> Fe²⁺ + 2e⁻

Number density of conduction electrons = 2 conduction electrons/1 atom of iron

Number density of conduction electrons = 2 × 8.49 × 10²⁸

Number density of conduction electrons = 1.70 × 10²⁹ conduction electrons/m³.

For the drift speed of conduction electrons, we have:

V = I/(n × A × Q)

V = 30/(1.70 × 10²⁹ × 1.602 × 10⁻¹⁹ × 5 × 10⁻⁶)

Drift speed, V = 2.21 × 10⁻⁴ m/s.

Read more on drift speed here: brainly.com/question/15219891

#SPJ4

Complete Question:

An iron wire has a cross-sectional area of 5.00 x 10-6 m2. Carry out steps (a) through (e) to compute the drift speed of the conduction electrons in the wire.

(a) How many kilograms are there in 1 mole of iron?

(b) Starting with the density of iron and the result of part (a), compute the molar density of iron (the number of moles of iron per cubic meter).

(c) Calculate the number density of iron atoms using Avogadro’s number.

(d) Obtain the number density of conduction electrons given that there are two conduction electrons per iron atom.

(e) If the wire carries a current of 30.0 A, calculate the drift speed of conduction electrons.

4 0
1 year ago
Other questions:
  • Hi to answer this question you need to be in 5th grade or older
    10·1 answer
  • Please help!!! These questions are about specific heat capacity.
    13·1 answer
  • A(n)... is a material that takes in a wave when the wave hits it
    8·1 answer
  • Student bikes to school by traveling first dN = 1.10 miles north, then dW = 0.300 miles west, and finally dS = 0.200 miles south
    15·1 answer
  • Tool used to measure time
    14·2 answers
  • What is the potential difference across a 15Ω resistor that has a current of 3.0 A?
    10·2 answers
  • Mass number of 43 and 21 electrons what is this atom
    13·1 answer
  • What happens to the induced electric current if the number of loops is increased from one to three?
    8·1 answer
  • What types of cuts do jig saw sanders make?​
    8·2 answers
  • What did johannes kepler contribute to the study of planets? he formulated the universal law of gravitation. he identified the f
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!