Answer:
13.37 rev/min
Explanation:
acceleration due to gravity (g) = 9.8 m/s², centripetal acceleration (
) = 1.8 * g = 1.8 * 9.8 m/s² = 17.64 m/s².
r = 9 m
Centripetal acceleration (
) is given by:

The velocity (v) is given by:
v = ωr; where ω is the angular velocity
Hence:
ω = v/r = 12.6 / 9
ω = 1.4 rad/s
ω = 2πN
N = ω/2π = 1.4 / 2π
N = 0.2228 rev/s
N = 13.37 rev/min
The kinetic energy and gravitational potential energy changes during its movement from ground to the top height.
<h3>What happens to kinetic and potential energy while motion?</h3>
When the ball moves upward, its gravitational potential energy is increases and kinetic energy begins to decrease but when the ball falls towards the earth, its gravitational potential energy is transformed into kinetic energy. When the ball collides with the ground, the kinetic energy is transformed into other forms of energy.
Learn more about kinetic energy here: brainly.com/question/20658056
Answer:
1, 2 and 3
Explanation:
The most dense substance will settle at the bottom of the cup
Answer:
<h2>21 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 3.5 × 6
We have the final answer as
<h3>21 N</h3>
Hope this helps you
It is 10.20 m from the ground.
<u>Explanation:</u>
<u>Given:</u>
m = 0.5 kg
PE = 50 J
We know that the Potential energy is calculated by the formula:

where m is the is mass in kg; g is acceleration due to gravity which is 9.8 m/s and h is height in meters.
PE is the Potential Energy.
Potential Energy is the amount of energy stored when an object is stationary.
Here, if we substitute the values in the formula, we get

50 = 0.5 × 9.8 × h
50 = 4.9 × h

h = 10.20 m