I don't know this 1 I'm sorry I can't help you
Answer: Here this will help you..
Explanation:
1 kg-m/s to kilogram-force meter/second = 1 kilogram-force meter/second
5 kg-m/s to kilogram-force meter/second = 5 kilogram-force meter/second
10 kg-m/s to kilogram-force meter/second = 10 kilogram-force meter/second
20 kg-m/s to kilogram-force meter/second = 20 kilogram-force meter/second
30 kg-m/s to kilogram-force meter/second = 30 kilogram-force meter/second
40 kg-m/s to kilogram-force meter/second = 40 kilogram-force meter/second
50 kg-m/s to kilogram-force meter/second = 50 kilogram-force meter/second
75 kg-m/s to kilogram-force meter/second = 75 kilogram-force meter/second
100 kg-m/s to kilogram-force meter/second = 100 kilogram-force meter/second
Answer:
The boat won't be able to move if the oars were out and there was no thruster. If there was a flow of the water then yes there would be a moving boat.
Thank you for posting your question here. The total distance traveled by the truck during the 3.2 seconds interval is 83 m. Below is the solution:
d = vit + 1/2 at^2
d = (22m/ s) (3.2s) + 1/2 (2.4m/ s^2) (3.2s)^2
d = 83 m
Hope the answer helps.
Answer:
The angular momentum of the particle is 58.14 kg m²/s along positive z- axis and is independent of time .
Explanation:
Given that,
Mass = 1.70 kg
Position vector 
We need to calculate the angular velocity
The velocity is the rate of change of the position of the particle.



We need to calculate the angular momentum of the particle
Using formula of angular momentum

Where, p = mv
Put the value of p into the formula

Substitute the value into the formula



Hence, The angular momentum of the particle is 58.14 kg m²/s along positive z- axis and is independent of time .