The answer is adduction lol
Answer:
In a neutral molecule, the sum of the bonding valance electrons must be equal. So the products of the negative element and its charges and the positive element and its charge must be equal.
Explanation:
C1×N1 = C2×N2
If we have a 3 valance electrons , the 'A' charge will be either +3 or -5 for a full octet and valance electron in 'B' atoms will mostly result in acquisition of additional electrons (2) for an octet and relative charge of -2.
Balancing the two,
3 × A = -2 × B
To be equal, A = 2 and B = 3
Therefore, A²B³
what is that i cant see anything?
Answer: Theoretical Yield = 0.2952 g
Percentage Yield = 75.3%
Explanation:
Calculation of limiting reactant:
n-trans-cinnamic acid moles = (142mg/1000) / 148.16 = 9.584*10⁻⁴ mol
pyridium tribromide moles = (412mg/1000) / 319.82= 1.288*10⁻³ mol
- n-trans-cinnamic acid is the limiting reactant
The molar ratio according to the equation mentioned is equals to 1:1
The brominated product moles is also = 9.584*10⁻⁴ mol
Theoretical yield = (9.584*10⁻⁴ mol) * (Mr of brominated product)
= (9.584*10⁻⁴ mol) * (307.97) = 0.2952 g
Percentage Yield is : Actual Yield / Theoretical Yield = 0.2223/0.2952
= 75.3%
Answer:
The answer to your question is P = 0.18 atm
Explanation:
Data
mass of O₂ = 0.29 g
Volume = 2.3 l
Pressure = ?
Temperature = 9°C
constant of ideal gases = 0.082 atm l/mol°K
Process
1.- Convert the mass of O₂ to moles
16 g of O₂ -------------------- 1 mol
0.29 g of O₂ ---------------- x
x = (0.29 x 1)/16
x = 0.29/16
x = 0.018 moles
2.- Convert the temperature to °K
Temperature = 9 + 273 = 282°K
3.- Use the ideal gas law ro find the answer
PV = nRT
-Solve for P
P = nRT/V
-Substitution
P = (0.018 x 0.082 x 282) / 2.3
-Simplification
P = 0.416/2.3
-Result
P = 0.18 atm