Answer:
Granite
Explanation:
Trust me I learned this 2years ago
Answer:
6.5 m/s
Explanation:
We are given that
Distance, s=100 m
Initial speed, u=1.4 m/s
Acceleration, 
We have to find the final velocity at the end of the 100.0 m.
We know that

Using the formula






Hence, her final velocity at the end of the 100.0 m=6.5 m/s
Explanation:
It is given that,
Input voltage, 
Input current, 
Output current, 
Number of turns in the secondary side of transformer, 
We need to find the number of turns in the primary side of the transformer. The current to the number of turns in the input and output is given by :

Substituting all the above values
So,

So, the number of turns in primary side of the transformer is 5885.
Answer: the expanding universe
Explanation:
Hope that helps!
Answer:
True
Explanation:
Pressure is defined as:

where
F is the magnitude of the force perpendicular to the surface
A is the surface
Therefore, pressure is inversely proportional to the area of the surface:

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"
<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>
is true.