Answer:
Density = 1.1839 kg/m³
Mass = 227.3088 kg
Specific Gravity = 0.00118746 kg/m³
Explanation:
Room dimensions are 4 m, 6 m & 8 m. Thus, volume = 4 × 6 × 8 = 192 m³
Now, from tables, density of air at 25°C is 1.1839 kg/m³
Now formula for density is;
ρ = mass(m)/volume(v)
Plugging in the relevant values to give;
1.1839 = m/192
m = 227.3088 kg
Formula for specific gravity of air is;
S.G_air = density of air/density of water
From tables, density of water at 25°C is 997 kg/m³
S.G_air = 1.1839/997 = 0.00118746 kg/m³
Kinetic energy is the energy possessed by a body in motion while potential energy is the energy of a body at rest.
Kinetic energy is given by E=1/2MV² where M is the mass of the body while V is the velocity of the body.
To get mass we can use the formula M= 2 Ek/V² (Making M the subject)
hence mass = (2 ×675)÷35²
= 1.102 kg
Constant force. Basicly in no gravity you have to keep puching smth for it to accelerate and once you stop it just would remain at the same speed. On earth the fact that something is falling faster and faster means it keeps beeing constantly pulled by gravity so the same principle applies
Answer:

Explanation:
Mass of block=10 kg
Applied horizontal force =F=20 N
Friction force=f=10 N
We have to find the acceleration of block.
Net force=Applied horizontal force-friction force

Where F= Horizontal force
f=Friction force
m=Mass of object
a=Acceleration of object


Hence, the acceleration of the block=
<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters.
Let's calculate the time for the ball to fall 235 meters to the ground.
y = (1/2)gt^2
t^2 = 2y / g
t = sqrt{ 2y / g }
t = sqrt{ (2) (235 m) / (9.81 m/s^2) }
t = 6.9217 s
We can use the time t to find the horizontal speed.
v = d / t
v = 235 m / 6.9217 s
v = 33.95 m/s
Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>