Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
Answer:
Molecules in liquids are held to other molecules by intermolecular interactions, which are weaker than the intramolecular interactions that hold the atoms together within molecules and polyatomic ions.
CH₄(g) + 3 Cl₂(g) → CHCl₃(g) + 3 HCl(g)
From the equation we notice that 1 mole of methane produces 1 mole of chloroform:
16 g Methane → 119.38 g Chloroform
? g Methane → 37.5 g Chloroform
by cross multiplication:
= (16 * 37.5) / 119.38 = 5.0 g methane
Answer:
1.5 M.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 L of the solution.
<em>M = (no. of moles of LiBr)/(Volume of the solution (L).</em>
<em></em>
∵ no. of moles of LiBr = (mass/molar mass) of LiBr = (97.7 g)/(86.845 g/mol) = 1.125 mol.
Volume of the solution = 750.0 mL = 0.75 L.
∴ M = (no. of moles of luminol)/(Volume of the solution (L) = (1.125 mol)/(0.75 L) = 1.5 M.
Answer:
mass/13of molecules .........