Given:
<span> 2.1 moles of chlorine gas (Cl2) at standard temperature and pressure (STP)
Required:
volume of CL2
Solution:
Use the ideal gas law
PV = nRT
V = nRT/P
V = (2.1 moles Cl2) (0.08203 L - atm / mol - K) (273K) / (1 atm)
V = 47 L</span>
Answer:
if you want to find average speed so u need to use this formula
Average speed = 
Answer:
-125.4
Explanation:
Target equation is 4C(s) + 5H2(g) = C4H10
These are the data equations for enthalpy of combustion
- C(s) + O2(g) =O2(g) -393.5 kJ/mol * 4
- H2(g) + ½O2(g) =H20(l) = 285.8 kJ/mol * 5
- 2CO2(g) + 3H2O(l) = 13/2O2 (g) + C4H10 - 2877.1 reverse
To get target equation multiply data equation 1 by 4; multiply equation 2 by 5; and reverse equation 3, so...
Calculate 4(-393.5) + 5(-285.8) + 2877.6 and you should get the answer.
Answer:
Potassium permanganate.
Explanation:
Both substances are dyes, but the methylene blue has a bigger molecular mass (319.85 g/mol), that means that the particles are bigger in comparison with the potassium permanganate that has a molecular mass of 158.034 g/mol.
Since the molar mass is the half in the case of potassium permanganate, it can be considered that the particle size is the half in size. In the agar, a smaller particle will present less resistance to flow, that means that it going to move faster.
Your answer is D, OH-! correct me if I’m wrong.