Answer:
Sound waves and light waves need to change places.
Explanation:
Answer:
Q14: 17,140 g = 17.14 kg.
Q16: 504 J.
Explanation:
<u><em>Q14:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = 3600 x 10³ J).
m is the mass of the ice (m = ??? g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 100.0°C - 0.0°C = 100.0°C).
∵ Q = m.c.ΔT
∴ (3600 x 10³ J) = m.(2.1 J/g.°C).(100.0°C)
∴ m = (3600 x 10³ J)/(2.1 J/g.°C).(100.0°C) = 17,140 g = 17.14 kg.
<u><em>Q16:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 12.0 g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 0.0°C - (-20.0°C) = 20.0°C).
∴ Q = m.c.ΔT = (12.0 g)(2.1 J/g.°C)(20.0°C) = 504 J.
Biuret reagent will indicate the presence of protein in a given sample. It is also known as the Piotrowski's test. This reagent consists of copper (II) sulfate and sodium hydroxide. It detects peptide bonds by the reaction of the copper ions in an alkaline solution. The copper ions would form violet colored complexes when peptide is present in the solution. From this test, concentration can be calculated since the intensity of the color depends on the amount of peptide bonds and according to the Beer-Lambert law concentration and the absorption of light is proportional. The concentration is calculated by a spectrophotometric technique at a wavelength of 540 nm.
Answer:

Explanation:
Hello there!
In this case, according to the given combustion reaction of octane, it is possible for us to perform the stoichiometric method in order to calculate the mass of octane that is required to consume 300.0 g of oxygen by considering the 2:25 mole ratio, and the molar masses of 114.22 g/mol and 32.00 g/mol respectively:

Regards!
Answer:
275g
Explanation:
Depending on the molar mass you are given, you can use that to solve this.
(I'm going based on my science class' molar mass of sulphur being 32.07g/mol)
Starting off, the formula for finding moles is
n=m/M (moles = mass / molar mass)
We can manipulate this equation to solve for mass.
m=Mn
now fill in what we now.
m = 32.07*8.56
mass = 274.5192
Now round for significant digits (if you are needed to do)
mass = 275g