Water vapour particles are most likely to phase change into liquid particles if the vapour particle come into contact with A COOLER SURFACE.
For a liquid to change to gas, it has to absorb enough energy to break the chemical bond that is holding the liquid particles together. When a liquid change to gas it is called vaporization. When a vapour, for instance water vapour comes in contact with cooler surfaces they lose energy and get converted back to the liquid state; this process is called condensation.
D. Yep, D is the answer, alright.
Answer:
41 g
Explanation:
We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.
pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]
pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]
log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]
log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40
[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M
We can find the mass of NaC₆H₅COO using the following expression.
M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L
mass NaC₆H₅COO = 41 g
Roman numerals are used in naming ionic compounds when the metal cation forms more than one ion. The metals that form more than one ion are the transition metals, although not all of them do this.
Answer:
Our planet's rotation produces a force on all bodies moving relative to theEarth. ... The force, called the "Coriolis effect," causes the direction of winds and ocean currents to be deflected.
Explanation: