Answer:
A - 3
B - 6
Explanation:
The valency of hydrogen atom is +1
The valancy of an atom of other element combining with the hydrogen atom can be determined from the number of associated hydrogen.
when H combines with A, three atoms of hydrogen are used. Thus the valency of element A is -3
Now B combines with two molecules of A whose valency is -3
The valency of B would be twice the valency of element A i.e 6
if hydrogen combines with B, then the compound formed will be BH6
Answer:
1.181 × 10²⁴ molecules CO₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
86.34 g CO₂
<u>Step 2: Identify Conversion</u>
Avogadro's Number
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Convert</u>
<u />
= 1.18141 × 10²⁴ molecules CO₂
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig fig rules and round.</em>
1.18141 × 10²⁴ molecules CO₂ ≈ 1.181 × 10²⁴ molecules CO₂
The oxidation state of a substance is the electric charge it is exhibiting in a given state. This may be determined by looking at the oxidation states of accompanying atoms as well as the charge on the complete molecule.
In this case:
Molecular charge: 0
Oxidation state of oxygen: -2 (it is a group 6 element)
Thus,
S + 3 * -2 = 0
S = 6
Sulfur is exhibiting an oxidation state of +6.
Answer : The mole fraction and partial pressure of
and
gases are, 0.267, 0.179, 0.554 and 1.54, 1.03 and 3.20 atm respectively.
Explanation : Given,
Moles of
= 1.79 mole
Moles of
= 1.20 mole
Moles of
= 3.71 mole
Now we have to calculate the mole fraction of
and
gases.


and,


and,


Thus, the mole fraction of
and
gases are, 0.267, 0.179 and 0.554 respectively.
Now we have to calculate the partial pressure of
and
gases.
According to the Raoult's law,

where,
= partial pressure of gas
= total pressure of gas = 5.78 atm
= mole fraction of gas


and,


and,


Thus, the partial pressure of
and
gases are, 1.54, 1.03 and 3.20 atm respectively.