Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M
Answer:
Sodium bicarbonate
Explanation:
Sodium bicarbonate ( NaHCO₃ ) -
Sodium bicarbonate , according to the IUPAC nomenclature , its name is sodium hydrogen carbonate ,and in common terms also refereed to as baking soda .
It is a white crystalline solid , it is basic in nature .
<u>The cation and anion of this salt are the sodium ion ( Na⁺) and the anion bicarbonate anion (HCO³⁻) .</u>
<u />
Ethylene Burns in the presence of O₂ to produce CO₂ and H₂O vapors;
C₂H₄ + 3 O₂ → 2 CO₂ + 2 H₂O
According to equation,
22.4 L (1 mole) C₂H₄ reacts completely to produce = 44.8 L (2 moles) of H₂O
So,
1.65 L of C₂H₄ on complete reaction will produce = X L of H₂O
Solving for X,
X = (1.65 L × 44.8 L) ÷ 22.4 L
X = 3.3 L of H₂O