1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
2 years ago
10

Can someone help quickly please and thank you

Physics
1 answer:
Sergio039 [100]2 years ago
8 0

Answer:

I think D??

Explanation:

You might be interested in
A woman lifts her 100-newton child up one meter and carries her for a distance of 50 meters to the child's bedroom. How much wor
tankabanditka [31]
100 J

Please mark me brainliest it would be greatly appreciated haha
5 0
3 years ago
Read 2 more answers
Consider a cylindrical segment of a blood vessel 2.70 cm long and 3.10 mm in diameter. What additional outward force would such
Lyrx [107]

This question is incomplete, the complete question is;

- Calculate the difference in blood pressure between the feet and top of the head of a person who is 1.80m Tall

- Consider a cylindrical segment of a blood vessel 2.70 cm long and 3.10 mm in diameter. What additional outward force would such a vessel need to withstand in the person's feet compared to a similar vessel in her head

Answer:

- the difference in blood pressure is 18698.4 Pa

- the additional outward force F is 4.86 N

Explanation:

Given the data in the question;

we know that the expression for difference in blood pressure is;

ΔP = pgh

where p is density = 1060 kg/m³

g is acceleration due to gravity  = 9.8 m/s²

and h is height = 1.80 m

now we substitute

ΔP = 1060 × 9.8 × 1.80

ΔP = 18698.4 Pa

therefore the difference in blood pressure is 18698.4 Pa

Also given that;

diameter of blood vessel d = 3.10 mm

radius r = 3.10 mm / 2 = 1.55 mm = 0.00155 m

length l = 2.70 cm = 0.027 m

Surface area of the cylindrical segment of a blood vessel is

A = 2πrl

we substitute

A = 2 × π × 0.00155 × 0.027

A = 2.6 × 10⁻⁴ m²

so

the required for will be;

F = PA

we substitute

F = 18698.4 Pa × 2.6 × 10⁻⁴ m²

F = 4.86 N

Therefore, the additional outward force F is 4.86 N

5 0
2 years ago
A 0.3-kg object connected to a light spring with a force constant of 19.3 N/m oscillates on a frictionless horizontal surface. A
Ghella [55]

The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is

<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J

That is,

• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point

• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium

so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.

By the work-energy theorem,

<em>W</em> = ∆<em>K</em> = <em>K</em>

where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So

<em>W</em> = 1/2 <em>mv</em> ²

where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get

<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s

8 0
3 years ago
An electric field of magnitude 2.35 V/m is oriented at an angle of 25.0° with respect to the positive z-direction. Determine the
zzz [600]

Answer:

The magnitude of the electric flux is 3.53\ N-m^2/C

Explanation:

Given that,

Electric field = 2.35 V/m

Angle = 25.0°

Area A= 1.65 m^2

We need to calculate the flux

Using formula of the magnetic flux

\phi=E\cdot A

\phi = EA\cos\theta

Where,

A = area

E = electric field

Put the value into the formula

\phi=2.35\times1.65\times\cos 25^{\circ}

\phi=2.35\times1.65\times0.91

\phi=3.53\ N-m^2/C

Hence, The magnitude of the electric flux is 3.53\ N-m^2/C

8 0
2 years ago
Asap pls hurry will mark brainiest
kifflom [539]
#1. A. Waxing crescent.
#2. 1.
#3. C.
#4. C.
6 0
2 years ago
Other questions:
  • Which of the following statements can be concluded (deducted) from the parallel-axis theorem? The area moment of inertia of an a
    12·1 answer
  • True or False: The Q value (the RBE) for alpha particles is higher than the Q value of neutrons and beta particles.?
    6·1 answer
  • If a 8.0 kg mass is hung on the end of a spring, it is stretched 0.78 meters as a result. What is the force constant of the spri
    6·2 answers
  • Which stage of Erik Erikson’s psychosocial theory of personality is the first one and occurs during infancy?
    15·1 answer
  • “Is there a relationship between mass and gravity of a planet?” If there is a relationship, (such as- as the mass gets bigger th
    5·1 answer
  • Four 240 Ω light-bulbs are connected in series. What is the total resistance of the circuit? What is their resistance if they ar
    11·1 answer
  • When a car’s velocity is negative and its acceleration is negative, what is happening to the car’s motion?
    7·1 answer
  • An elephant pushes with 2000 N on a load of trees. It then pushes these trees for 150 m. How much work did the elephant d
    6·1 answer
  • a car accelerates from 2 m/s to 28m/s at a constant rate of 3 m/s^2. How far does it travel while accelerating?
    13·1 answer
  • Need help asap
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!