1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
2 years ago
8

A 217 Ω resistor, a 0.875 H inductor, and a 6.75 μF capacitor are connected in series across a voltage source that has voltage a

mplitude 30.0 V and an angular frequency of 220 rad/s . What is v at t= 22.0 ms ? What is vR at t= 22.0 ms ? What is vL at t= 22.0 ms ? What is vC at t= 22.0 ms ? What is vR? What is vL? What is vC?
Physics
1 answer:
Nataly [62]2 years ago
4 0

For an AC circuit:

I = V/Z

V = AC source voltage, I = total AC current, Z = total impedance

Note: We will be dealing with impedances which take on complex values where j is the square root of -1. All phasor angles are given in radians.

For a resistor R, inductor L, and capacitor C, their impedances are given by:

Z_{R} = R

R = resistance

Z_{L} = jωL

ω = voltage source angular frequency, L = inductance

Z_{C} = -j/(ωC)

ω = voltage source angular frequency, C = capacitance

Given values:

R = 217Ω, L = 0.875H, C = 6.75×10⁻⁶F, ω = 220rad/s

Plug in and calculate the impedances:

Z_{R} = 217Ω

Z_{L} = j(220)(0.875) = j192.5Ω

Z_{C} = -j/(220×6.75×10⁻⁶) = -j673.4Ω

Add up the impedances to get the total impedance Z, then convert Z to polar form:

Z = Z_{R} + Z_{L} + Z_{C}

Z = 217 + j192.5 - j673.4

Z = (217-j480.9)Ω

Z = (527.6∠-1.147)Ω

Back to I = V/Z

Given values:

V = (30.0∠0+220t)V (assume 0 initial phase, and t = time)

Z = (527.6∠-1.147)Ω (from previous computation)

Plug in and solve for I:

I = (30.0∠0+220t)/(527.6∠-1.147)

I = (0.0569∠1.147+220t)A

To get the voltages of each individual component, we'll just multiply I and each of their impedances:

v_{R} = I×Z_{R}

v_{L} = I×Z_{L}

v_{C} = I×Z_{C}

Given values:

I = (0.0569∠1.147+220t)A

Z_{R} = 217Ω = (217∠0)Ω

Z_{L} = j192.5Ω = (192.5∠π/2)Ω

Z_{C} = -j673.4Ω = (673.4∠-π/2)Ω

Plug in and calculate each component's voltage:

v_{R} = (0.0569∠1.147+220t)(217∠0) = (12.35∠1.147+220t)V

v_{L} = (0.0569∠1.147+220t)(192.5∠π/2) = (10.95∠2.718+220t)V

v_{C} = (0.0569∠1.147+220t)(673.4∠-π/2) = (38.32∠-0.4238+220t)V

Now we have the total and individual voltages as functions of time:

V = (30.0∠0+220t)V

v_{R} = (12.35∠1.147+220t)V

v_{L} = (10.95∠2.718+220t)V

v_{C} = (38.32∠-0.4238+220t)V

Plug in t = 22.0×10⁻³s into these values and take the real component (amplitude multiplied by the cosine of the phase) to determine the real voltage values at this point in time:

V = 30.0cos(0+220(22.0×10⁻³)) = 3.82V

v_{R} = 12.35cos(1.147+220(22.0×10⁻³)) = 11.8V

v_{L} = 10.95cos(2.718+220(22.0×10⁻³)) = 3.19V

v_{C} = 38.32cos(-0.4238+220(22.0×10⁻³)) = -11.2V

You might be interested in
A capacitor consists of two concentric cylinders. The inner cylinder has a radius of 0.001 m and the outer cylinder a radius of
AlexFokin [52]

Answer:

The capacitance is 1.75 nF

Explanation:

From the question we are given that

    The inner radius is r_{in}  = 0.001

     The outer radius is r_{out} = 0.0011 \ m

    Length of the capacitor is L = 1m

    The dielectric constant is Di = 2 \ for  \ 0 < \phi < \pi

   The dielectric constant is  Di_2  = 4 \ for \ \pi < \phi < 2\pi

Generally the capacitance of a capacitor can be mathematically represented as

                C = \frac{\pi \epsilon_0 Di_1 L}{ln\frac{r_{out}}{r_{in}} } + \frac{\pi \epsilon_0 Di_2L}{ln\frac{r_{out}}{r_{in}} }

                   = \frac{\pi \epsilon_0 L (Di_1 + Di_2)}{ln\frac{r_{out}}{r_{in}} }

                  = \frac{(3.142)(8.85*10^{-12})(1)(2+4)}{ln\frac{0.0011}{0.001} }

                  =1.75*10^{-9} F

                  1.75nF

                 

                   

5 0
3 years ago
These are equal and opposite forces that do not cause a change in position or motion. True or False
Contact [7]

Answer:

TRUE

Explanation:

Balance forces are usually defined as the two distinct force that acts on an object but in opposite directions. These two acting forces are equal in size or magnitude. When this type of force is applied on any object, it signifies that the object is stationary or it is moving at a constant speed and in the same direction.

This force is comprised of two most important properties namely the strength and direction. When any of the two forces is higher then it result in the motion of the object.

Thus, the above given statement is TRUE.

3 0
3 years ago
A physics student looks into a microscope and observes that small particles suspended in water are moving about in an irregular
Dominik [7]

Answer:

d. the actual motion is regular, but the speeds of particles are too large to observe the regular motion

Explanation:

The speeds of the particles are very large and comparatively the average  free path is very small . Therefore time taken in covering the free path ( path between two consecutive collision with medium particles ) is very small . Hence the st line  path covered by particles between two collision is less likely to be visible. Hence motion appears irregular or zig-zag.

6 0
3 years ago
In concave lenses a Distance object appears ​
JulsSmile [24]

Answer:

it appears to be farther away than it actually is, and therefore smaller then the object itself.

4 0
2 years ago
Which statement correctly describes the relationship between frequency and wavelength?
Len [333]
The relationship between the frequency and wavelength of a wave is given by the equation:

v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency. 

If we divide the equation by f we get:

λ=v/f

From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases. 

So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.  
3 0
3 years ago
Read 2 more answers
Other questions:
  • A uniformly charged rod (length = 2.0 m, charge per unit length = 5.0 nc/m) is bent to form one quadrant of a circle. what is th
    15·1 answer
  • A man is pulling a 13-kg sled across a flat, snowy surface. He holds the handle of the sled at a 30° angle with the ground.
    8·1 answer
  • 1. Two charges Q1( + 2.00 μC) and Q2( + 2.00 μC) are placed along the x-axis at x = 3.00 cm and x=-3 cm. Consider a charge Q3 of
    9·1 answer
  • The logarithm of x, written log(x), tells you the power to which you would raise 10 to get x. So, if y=log(x), then x=10^y. It i
    7·1 answer
  • Multiply the number 4.48E-8 by 5.2E-4 using Google. What is the correct answer in scientific notation?
    8·1 answer
  • Two identical speakers are set some distance apart in a large open field. Both are producing sound, in unison, with a wavelength
    12·1 answer
  • Which of the following statements is true?
    12·2 answers
  • Think of an animal that has a distinctive or unusual body shapes. Describe how its body shape helps its momentum and how momentu
    12·1 answer
  • The side length of a square is modeled by s=A, where A is the area of the square. Graph the function. What is the side length of
    10·1 answer
  • Light hits ocean during ​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!