Explanation:
a) Given in the y direction (taking down to be positive):
Δy = 50 m
v₀ = 0 m/s
a = 10 m/s²
Find: t
Δy = v₀ t + ½ at²
50 m = (0 m/s) t + ½ (10 m/s²) t²
t = 3.2 s
b) Given in the x direction:
v₀ = 12 m/s
a = 0 m/s²
t = 3.2 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (12 m/s) (3.2 s) + ½ (0 m/s²) (3.2 s)²
Δx = 38 m
Answer:
m
Explanation:
At 10am, the minute hand and hour hand are ' 2 hours apart', since the minute hand is at 12pm and hour hand is at 10am.
Angle between the two hands = 2/12 * 360
= 60°
Arc Length = 
= 
The best illustration that represents the interaction is D
Answer:
(a) dime
Explanation:
Convert all to metric unit:
0.5 cm = 0.005 m
1.8 cm = 0.018 m
71 cm = 0.71 m
In order to find out we would need to calculate the ratio R between the object diameter d and their distance s to our eyes:



Since the ratio of the dime is larger than the ratio of the moon, and the ratio of the pea is smaller than the ratio of the moon, only the (a) dime can cover your view of the moon.
Part 1
When the solar atmosphere accumulates a lot of magnetic energy
to a point that cannot accumulate more, all that magnetic energy is suddenly released,
and with it, a lot of radiation. So much, that in fact it covers all of the
electromagnetic spectrum; from radio waves to gamma rays. That burst of
radiation is called a solar flare. In a single solar flare the amount of
radiation released is millions of times greater than all the nuclear bombs in
the face if the earth exploding together. Lucky for us, most of the high-energy
radiation dissipates before reaching the Earth, and the radiation that do reach
us, is deflected by the Earth’s magnetic field.
Part 2
1. Not all the radiation
of solar flares that reach the Earth is deflected by its magnetic field; some
of them reach us and charges the upper atmosphere with ionized particles. Those
particles react with the gases in the atmosphere and produce a light; that
light is what we call Auroras borealis or southern nights; One the most beautiful
natural spectacles in earth, who thought Auroras begin their lives as deadly
solar flares.
2. Solar flares
contain a lot of high-energy radiation that is extremely dangerous for our
electronic devices; when they reach the Earth, they can damage sensible
electronics like satellites. A very powerful solar flare could even damage all
the electronic devices on the surface of the Earth.