Required value of initial speed of the bullet be ( 4M/m)√(gL).
Given parameters:
Mass of the bullet =m.
Mass of the bob of the pendulum = M.
speed of the bullet before collision = v
Speed of the bullet after collision = v/2.
Length of the pendulum stiff rod = L.
Let speed transmitted to the pendulum be u.
Using principle of conservation of momentum:
mv = Mu + mv/2
⇒ Mu = mv/2
⇒ u = (m/M)v/2
We know that: to make the bob over the top of the trajectory without falling backward in its circular path, required speed be = √(4gL). [ where g = acceleration due to gravity]
To be minimum initial speed the bullet must have in order for the pendulum bob to just barely swing through a complete vertical circle:
u = √(4gL)
⇒ (m/M)v/2 = √(4gL)
⇒ v =( 4M/m)√(gL).
Hence, minimum required speed of the bullet be ( 4M/m)√(gL).
Learn more about speed here:
brainly.com/question/28224010
#SPJ1
Heated air rises while cooled air sinks.
Answer:
3,500,000 J
Explanation:
WORK = POWER * TIME
WORK= 5400 * 640
=6456000 J = 3,500,000 J
Answer:
3.62m/s and 2.83m/s
Explanation:
Apply conservation of momentum
For vertical component,
Pfy = Piy
m* Vof (sin38) - m*Vgf (sin52) = 0
Divide through by m
Vof(sin38) - Vgf(sin52) = 0
Vof(sin38) = Vgf(sin52)
Vof (sin38/sin52) = Vgf
0.7813Vof = Vgf
For horizontal component
Pxf= Pxi
m* Vof (cos38) - m*Vgf (cos52) = m*4.6
Divide through by m
Vof(cos38) + Vgf(cos52) = 4.6
Recall that
0.7813Vof = Vgf
Vof(cos38) + 0.7813 Vof(cos52) = 4.6
0.7880Vof + 0.4810Vof = 4.
1.269Vof = 4.6
Vof = 4.6/1.269
Vof = 3.62m/s
Recall that
0.7813Vof = Vgf
Vgf = 0.7813 * 3.62
Vgf = 2.83m/s
Answer:
you cant really give any answers because i cant tell u were to drag