The top row of boxes is " F O R C E " .
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
Answer:
i) No, the spring scale does not read a different value
ii) The torque will read a different value, it will reduce
iii) The spring scale does not need to be measured at the center of mass location.
Explanation:
The torque caused by the gyroscope can be given by the relation,
r × f

The torque measured by the gyroscope varies directly with the distance, r.
A decrease in the distance r will also cause a decrease in the value of the torque measured. When the distance, r is reduced from 7.5 inches to 5 inches, the torque caused by the gyroscope's weight also reduces.
The weight of the gyroscope remains constant despite the reduction in the distance because the weight of the gyroscope is not a function of the distance from the gyroscope. Therefore, the spring scale will not read a different value.
Yes, the spring scale does not need to be measured from the center of mass location because the weight does not depend on the location of measurement. The reading of the sprig scale remains constant.
Answer:
JC⁻¹
Explanation:
= mass of water added to calorimeter = 94.8 g
= initial temperature of the water added = 60.4 C
= specific heat of water = 4.184 Jg⁻¹C⁻¹
= mass of water available to calorimeter = 94.8 g
= initial temperature of the water in calorimeter = 22.3 C
= final equilibrium temperature = 35 C
= Heat gained by calorimeter
Using conservation of heat
Heat gained by calorimeter = Heat lost by water added - heat gained by water in calorimeter


J
= Change in temperature of calorimeter
Change in temperature of calorimeter is given as
C
Heat capacity of calorimeter is given as


JC⁻¹