The Geiger Counter. Geiger counters are used to detect radioactive emissions, most commonly beta particles and gamma rays. The counter consists of a tube filled with an inert gas that becomes conductive of electricity when it is impacted by a high-energy particle.
Hope That Helps!!!
NOTE:Mark as BRAINLIEST!!!!!
Answer:
Mass of liquid: 20.421g
Density= 1.0109405940594 g/mL
Explanation:
Mass of liquid
To find mass of liquid you take the mass of beaker + liquid (171.223g) and subtract it from the Mass of beaker (beaker without the water). The difference is the answer.
171.223g - 150.802g = 20.421g
Density
To find density you use the formula Mass/Volume. Take the Volume given, and the mass of the liquid you just found.
20.421mL/20.421g = 1.0109405940594 g/mL
The pressure increases if the volume decreases
Answer:
Explanation:
Hi there,
To get started, let's first observe our rate law:
we typically use square brackets [x] for chemistry kinetics, because they specifically tell us we are dealing with <em>concentrations</em>.
This rate law is in fourth-order, because the concentrations powers add up to 4. We are not told the unit of time for this prompt (unless you know it), so I just assumed the time unit to be "time."
To calculate the reaction rate, we simply plug in the concentration of A and B into the rate law. k is the <em>rate constant</em> and stays the same for an individual reaction.
![R=(0.1 \ M^{-3}*time^{-1})[1 \ M]^2[2 \ M]^2=0.4 \ M/time](https://tex.z-dn.net/?f=R%3D%280.1%20%5C%20M%5E%7B-3%7D%2Atime%5E%7B-1%7D%29%5B1%20%5C%20M%5D%5E2%5B2%20%5C%20M%5D%5E2%3D0.4%20%5C%20M%2Ftime)
Thus, the rate of reaction with those concentrations is 0.4 M/time.
Notice, the rate constant does in fact have units of it own. The unit for k can be calculated by knowing that:
- Rate (R) must end up with units of concentration (M) per time.
- The concentrations raised to a power can be used to help solve for the units of k.
If you liked this solution, leave it as Brainliest Answer and give a Rating!
Energy is used by plants to carry cellular respiration.