Answer:
126.0g of water were initially present
Explanation:
The electrolysis of water occurs as follows:
2H₂O(l) ⇄ 2H₂(g) + O₂(g)
<em>Where 2 moles of water produce 2 moles of hydrogen and 1 mole of oxygen.</em>
<em />
To find the mass of water we need to determine moles of oxygen and hydrogen, thus:
<em>Moles Hydrogen:</em>
14.0g H₂ ₓ (1mol / 2g H₂) = 7 moles H₂
<em>Moles Oxygen:</em>
112.0g O₂ ₓ (1mol / 32g) = 3.5 moles O₂
Based on the chemical equation, the moles of water initially present were 7 moles (That produce 7 moles H₂ and 3.5 moles O₂). The mass of 7 moles of H₂O is:
7 moles H₂O * (18g / mol) =
<h3>126.0g of water were initially present</h3>
By Boyles Law (P1V1=P2V2), substituting values in and solving for V2, we find that the new volume is 3.6 L<span />
Hmm, friction maybe? I guess it depends on how fast she stopped?
If an element contains 8 electrons, then there would be 6 electrons that will be placed in the 2nd valence shell. Each shell in an atom can only take up a fixed number of electrons. For the first shell, only two electrons can be found. For the second shell, it can hold up to 8 electrons. However, for this case only six electrons can be found since the others are found in the first shell.
Answer:
The purpose of the experiment is to see how water of different temperature and salinity affect the density.
Explanation:
Temperature and salinity directly affect the density of the water. Water of low temperature is more dense than water of high temperature, BUT, (fresh)water with no salt is less dense than (sea)water with more salt, so temperature and salinity change density of water.