Answer:
26945.6 ft⋅lbf
Explanation:
Volume of Right Circular Cone = pi*(radius^2)*(height/3)
Pi*(4)*(5/3) = 20.94 ft^3
Density = Mass / Volume
Mass = Density*Volume
Mass = (40)*(20.94)
Mass = 837.6 lb
Work = Force*Height
Force = Mass*Acceleration
Acceleration will be gravitational acceleration
Work = (837.6)*(32.17)*(1)
Work = 26945.6 ft⋅lbf
According to Newton laws of motion,
F = m*a
Here, m = 1,560 Kg
a = 1.30 m/s²
Substitute their values,
F = 1,560 * 1.30
F = 2028 N ~ 2030 N [ Closest value ]
In short, Your Answer would be Option C
Hope this helps!
A- hypothesis
You usually write hypothesis in science it’s something that can usually be tested.
B- prediction
Made before you do an science experiment, they’re usually like what you think could happen or will happen.
C- theory
Theses aren’t used with scientific evidence, they’re usually things that people believe happened. Example: Some believe Big Foot is real. But no one will ever know because its a theory
D- is already been eliminated, not all are right.
Answer is A
Hope this helped :)
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>