Actually, they're not. There's a group of stars and constellations arranged
around the pole of the sky that's visible at any time of any dark, clear night,
all year around. And any star or constellation in the rest of the sky is visible
for roughly 11 out of every 12 months ... at SOME time of the night.
Constellations appear to change drastically from one season to the next,
and even from one month to the next, only if you do your stargazing around
the same time every night.
Why does the night sky change at various times of the year ? Here's how to
think about it:
The Earth spins once a day. You spin along with the Earth, and your clock is
built to follow the sun . "Noon" is the time when the sun is directly over your
head, and "Midnight" is the time when the sun is directly beneath your feet.
Let's say that you go out and look at the stars tonight at midnight, when you're
facing directly away from the sun.
In 6 months from now, when you and the Earth are halfway around on the other
side of the sun, where are those same stars ? Now they're straight in the
direction of the sun. So they're directly overhead at Noon, not at Midnight.
THAT's why stars and constellations appear to be in a different part of the sky,
at the same time of night on different dates.
Answer:

Explanation:
Using kinematics equations:

Use
due to condition of distance traveled.
Solving second equation for time, there are two solutions. t=0 and

Use the expression in the first equation to have

Using trigonometric identities, you have the answer of the distance.
By doing the ratio for two different angles, you have the second answer. Due to sine function properties, the distances can be the same to complementary angles. Example, for 20° and 70°, the distance is the same.
Answer:
All electrons are negative(-) charged
When a parallel beam of light passes through a convex lens, the rays become farther from one another when the come out. This process of rays is called ''to diverge''. The concave lens makes rays of light diverge, so it is called diverging lens.
Answer:
610 meters.
Explanation:
Because Jim released the accelerator, the truck started to slow down, so the friction force will eventually stop the truck.
the kinetic energy of the truck just after Jim released the pedal is:

The work done by the friction force is given by:
