Great equation: distance = rate*time
So, distance run = 4.82 meters/second * 1.98 seconds = 9.5436 meters (round according to whatever the problem specifies, usually to the tenths or hundredths is sufficient).
This makes sense if you think about it since you are multiplying seconds with meters over seconds. The seconds cancel out, leaving you only the meters.
<span>It also doubles
The gravitational force between two masses is expressed as:
F = G*m1*m2/r^2
where
F = Force between the two masses
m1 = Mass of object 1
m2 = Mass of object 2
r = distance between centers of object 1 and object 2
G = Gravitational constant
The exact values of G, m1, m2, and r don't matter since all except for m1 is held constant. And when m1 suddenly doubles, the force attracting the two object to each other also doubles.</span>
C.
It is a motion with uniform acceleration, meaning that the acceleration will not change.
The object is thrown upwards with a positive velocity. This shows that the upward direction is positive. The object will decelerate due to gravity at a magnitude of 9.81 m/s2. Therefore, the acceleration is -9.81 m/s2.
Note that even though the velocity of the object is momentarily 0 m/s at maximum height, there is still a constant acceleration.
This allows the object first decelerate upwards, then change direction at max height, and finally accelerate downwards. So in this case, the acceleration is always negative and unchanged.
Answer:
dβ = 70. 77 dβ
Explanation:
The intensity of sound in decibels is
dβ = 10 log I/I₀
let's look for the intensity of this signal
I / I₀ = 10 dβ/10
I / I₀ = 3.981 10⁶
the threshold intensity of sound for humans is I₀ = 1 10⁻¹² W / m²
I = 3.981 10 ⁶ 1 10⁻¹²
I = 3,981 10⁻⁶ W / m²
It is indicated that 3 cornets are placed in the circle, for which total intensity is
I_total - 3 I
I_total = 3 3,981 10⁻⁶
I_total = 11,943 10⁻⁶ W / m²
let's reduce to decibels
dβ = 10 log (11,943 10⁻⁶/1 10⁻¹²)
dβ = 10 7.077
dβ = 70. 77 dβ