Data Given:
Time = t = ?
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 107.86/1 = 107.86 g
Amount Deposited = W = 17.3 g
Solution:
According to Faraday's Law,
W = I t e / F
Solving for t,
t = W F / I e
Putting values,
t = (17.3 g × 96500) ÷ (10 A × 107.86 g)
t = 1547.79 s
t = 1.54 × 10³ s
Answer:
[H+] = 1.74 x 10⁻⁵
Explanation:
By definition pH = -log [H+]
Therefore, given the pH, all we have to do is solve algebraically for [H+] :
[H+] = antilog ( -pH ) = 10^-4.76 = 1.74 x 10⁻⁵
The standard International System of Units (SI) unit of mass is the kilogram(kg). The kilogram is 1000 grams (g), first defined in 1795 as one cubic decimeter of water at the melting point of ice.
Based off the salt levels in each water.