1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
12

There are several ways to model a compound. One type of model is shown. What is the chemical formula for the molecule modeled? О

СНО O CAH102 O C6H1202 O C6H90 | НО H H-C-H H H-C-C-C-C-O-H Η | Η H-C-H H
what is the chemical formula for the molecule modeled ?​
Physics
1 answer:
stira [4]3 years ago
8 0

Answer:

It's most likely CAH102, if not i'm sorry

Explanation:

You might be interested in
Two boats leave the same port at the same time, with boat A traveling north at 15 knots (nautical miles per hour) and boat B tra
Mrrafil [7]

Answer:

The chance in distance is 25 knots

Explanation:

The distance between the two particles is given by:

s^2 = (x_A - x_B)^2+(y_A - y_B)^2  (1)

Since A is traveling north and B is traveling east we can say that their displacement vector are perpendicular and therefore (1) transformed as:

s^2 = x_B^2+y_A^2 (2)

Taking the differential with respect to time:

\displaystyle{2s\frac{ds}{dt}= 2x_B\frac{dx_B}{dt}+2y_A\frac{dy_A}{dt}}  (3)

where \displaystyle{\frac{dx_B}{dt}}=v_B and \displaystyle{\frac{dx_A}{dt}}=v_A are the respective given velocities of the boats. To find s and x_B we make use of the given position for A, y_A=30, the Pythagoras theorem and the relation between distance and velocity for a movement with constant velocity.

\displaystyle{y_A = v_A\cdot t\rightarrow t = \frac{y_A}{v_A}=\frac{30}{15}=2 h

with this time, we know can now calculate the distance at which B is:

\displaystyle{x_B = v_B\cdot t= 20 \cdot 2 = 40\ nmi

and applying Pythagoras:

\displaystyle{s = \sqrt{x_B^2+y_A^2}=\sqrt{30^2 + 40^2}=\sqrt{2500}=50}

Now substituting all the values in (3) and solving for  \displaystyle{\frac{ds}{dt} } we get:

\displaystyle{\frac{ds}{dt} = \frac{1}{2s}(2x_B\frac{dx_B}{dt}+2y_A\frac{dy_A}{dt})}\\\displaystyle{\frac{ds}{dt} = 25 \ knots}

4 0
3 years ago
What is the difference between a negative feedback system and a positive feedback system?
Anni [7]

Answer:

D

Explanation:

The negative feedback is responsible for maintaining equilibrium (stability) in a system as it lessens effects, which is contrary to positive feedback which increases reaction and moves a system further away from equilibrium (stability), It does so by amplifying the effects of a product or event and occurs when something needs to happen quickly. e.g

  • Insulin lowers down blood sugar levels, so when the body detects that it has too much sugar, the pancreas is prompted to release insulin and only stops when balance is achieved; hence, negative feedback.  
  •  When there is a tear on the skin, a chemical is released. This chemical causes platelets in the blood to activate, hence they release a chemical which signals more platelets to activate, until the wound is clotted, positive feedback.

7 0
3 years ago
A force of 5N and a force of 8N act to the same point and are inclined at 45degree to each other. Find the magnitude and directi
Alex_Xolod [135]
  • Magnitude: 12.1 N.
  • Direction: 17.0° to the 8 N force.
<h3>Explanation</h3>

Refer to the diagram attached (created with GeoGebra). Consider the 5 N force in two directions: parallel to the 8 N force and normal to the 8 N force.

  • \displaystyle F_{\text{1, Parallel}} = F_1 \cdot \cos{45^\textdegree} = \dfrac{5\sqrt{2}}{2}\;\text{N}.
  • \displaystyle F_{\text{1, Normal}} = F_1 \cdot \sin{45^\textdegree} = \dfrac{5\sqrt{2}}{2}\;\text{N}.

The sum of forces on each direction will be the resultant force on that direction:

  • Resultant force parallel to the 8 N force: (8 + \dfrac{5\sqrt{2}}{2})\;\text{N}.
  • Resultant force normal to the 8 N force: \dfrac{5\sqrt{2}}{2}\;\text{N}.

Apply the Pythagorean Theorem to find the magnitude of the resultant force.

\displaystyle \Sigma F = \sqrt{{(8 + \dfrac{5\sqrt{2}}{2})}^2 + {(\dfrac{5\sqrt{2}}{2})}^2} = 12.1\;\text{N} (3 sig. fig.).

The size of the angle between the resultant force and the 8 N force can be found from the tangent value of the angle. Tangent of the angle:

\displaystyle \dfrac{\Sigma F_\text{Normal}}{\Sigma F_\text{Parallel}} = \dfrac{8 + \dfrac{5\sqrt{2}}{2}}{\dfrac{5\sqrt{2}}{2}} \approx 0.306491.

Find the size of the angle using inverse tangent:

\displaystyle \arctan{ \dfrac{\Sigma F_\text{Normal}}{\Sigma F_\text{Parallel}}} = \arctan{0.306491} = 17.0\textdegree.

In other words, the resultant force is 17.0° relative to the 8 N force.

4 0
3 years ago
The answer and how to do it
Arturiano [62]
Current = charge per second
2 Coulombs per second = 2 Amperes

Potential difference = (current)x(resistance) in volts.

That's (2 Amperes) x (2 ohms).

That's how to do it.
I think you can find the answer now.
8 0
3 years ago
Two thin 80.0-cm rods are oriented at right angles to each other. Each rod has one end at the origin of the coordinates, and one
kogti [31]

Answer:

The net force on the electron is given as:

F = 1.35 x 10⁻¹³ N j - 1.35 x 10⁻¹³ N i

Explanation:

Given:

charge on rod along x-axis = Q₁ = -15 x 10⁻⁶ C

charge on rod along y-axis = Q₂ = 15 x 10⁻⁶ C

distance of electron from rod 1 = r₁ = 0.4 m

distance of electron from rod 1 = r₂ = 0.4 m

charge on electron = q = -1.6 x 10⁻¹⁹ C

ε° = 8.85 x 10⁻¹² C²/Nm²

Electric force on charge due to rod 1:

F₁ = qE = 1/4πε°(qQ₁/r₁²)

F₁ = (9 x 10⁹ x -1.6 x 10⁻¹⁹ x -15 x 10⁻⁶)/0.4²

F₁ = 1.35 x 10⁻¹³ N

Negative negative repels each other so the rod will Force the electron in positive y-direction.

F₁ = 1.35 x 10⁻¹³ N j

Electric force on charge due to rod 2:

F₂ = qE = 1/4πε°(qQ₂/r₂²)

F₂ = (9 x 10⁹ x -1.6 x 10⁻¹⁹ x 15 x 10⁻⁶)/0.4²

F₂ = - 1.35 x 10⁻¹³ N

Opposite charges attract each other so the rod will force the electron in negative x-direction.

F₂ =  - 1.35 x 10⁻¹³ N i

Net Force:

F = F₁ + F₂

F = 1.35 x 10⁻¹³ N j - 1.35 x 10⁻¹³ N i

4 0
3 years ago
Other questions:
  • A box is dropped onto a conveyor belt moving at 3.2 m/s. If the coefficient of friction between the box and the belt is 0.28, ho
    7·1 answer
  • Dolphins communicate using compression waves (longitudinal waves). Some of the sounds dolphins make are outside the range of hum
    13·1 answer
  • Describe what an electromagnet
    8·2 answers
  • The response of an object to the gravity is called ____
    8·1 answer
  • Can I have some help
    14·1 answer
  • In a doorknob, the knob is connected to a shaft. When the knob turns, the shaft turns,which moves the door latch. The radius of
    10·1 answer
  • How do simple machines make it easier to move an object?
    7·1 answer
  • Question 5 of 5<br> What do the arrows in the photograph represent?
    8·1 answer
  • Oil having a density of 922kg/m^3 floats on water. A rectangular block of wood 3.97 cm high and with a density of 963 kg/m^3 flo
    14·1 answer
  • A box with a mass of 50 kg is raised straight up. What is the force of the box?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!