Iron III Chloride has a chemical formula of FeCl₃, while ammonium hydroxide has a chemical formula of NH₄OH.
The <em>balanced equation</em> would be:
FeCl₃ (aq) + 3 NH₄OH (aq) → Fe(OH)₃ (s) + 3 NH₄Cl (aq)
The precipitate is Fe(OH)₃ or iron iii hydroxide.
To find the <em>complete ionic equation</em>, dissociate the compounds in aqueous phases into their ionic forms:
Fe³⁺ + Cl⁻ + NH₄⁺ + 3 OH⁻ --> Fe(OH)₃(s) + NH₄⁺ + Cl⁻
To find the <em>net ionic equation</em>, cancel out like ions that appear both in the reactant and product side:
Fe³⁺ + 3 OH⁻ --> Fe(OH)₃
Answer : The specific heat of the substance is 0.0936 J/g °C
Explanation :
The amount of heat Q can be calculated using following formula.

Where Q is the amount of heat required = 300 J
m is the mass of the substance = 267 g
ΔT is the change in temperature = 12°C
C is the specific heat of the substance.
We want to solve for C, so the equation for Q is modified as follows.

Let us plug in the values in above equation.


C = 0.0936 J/g °C
The specific heat of the substance is 0.0936 J/g°C
<span>Velocity describes the speed of an object and its direction of motion</span>
Answer:
Molecular formula: S4K8O16 empirical formula: SK2O4
Explanation:
First we find the moles of each by first finding grams (using the percent) and then using stoichiometry to convert into moles:
Sulfur: 696 *.18 = 125.28grams S* 
Potassium: 696 *.4487 = 312.2952 *
= 7.99117 mole K
Oxygen: 696 * .367 = 255.432 *
= 15.9654 mole O
Then we divide each value by the atom with the smallest number of moles to find the mole ratio:
3.907/3.907= 1
7.99117 mole K/ 3.907= 2.043
15.9654 mole O/ 3.907= 4.08
The empirical formula is SK2O4
To find the molecular formula, we divide the mass given (696) by the mass of the empirical formula (174.22) to get 4. We then divide each atom by 4.
Molecular formula: S4K8O16