The answer is 98ppm.
The ppm (Parts per million) is also a concentration unit. 1 ppm is equivalent to 1mg/L
Now, concentration of the solution of sulfuric acid is 0.0980 g/L.
We rewrite, 0.0980 g = 0.0980*1000 mg = 98mg
Therefore, the concentration of the sulfuric acid solution is 98 mg/L = 98 ppm.
Answer:
<span>ρ≅13.0⋅g⋅m<span>L<span>−1</span></span></span> = <span>13.0⋅g⋅c<span>m<span>−3</span></span></span>
Explanation:
<span>Density=<span>MassPer unit Volume</span></span> = <span><span>75.0⋅g</span><span><span>(36.5−31.4)</span>⋅mL</span></span> <span>=??g⋅m<span>L<span>−1</span></span></span>
Note that <span>1⋅mL</span> = <span>1⋅c<span>m<span>−3</span></span></span>; these are equivalent units of volume;
i.e. <span>1⋅c<span>m3</span></span> = <span>1×<span><span>(<span>10<span>−2</span></span>⋅m)</span>3</span>=1×<span>10<span>−6</span></span>⋅<span>m3</span>=<span>10<span>−3</span></span>⋅L=1⋅mL</span>.
In a branched chain of amino acids
H2SO4 + Na2CO3 → Na2SO4 + CO2 + H2O
The molarity of sulfuric acid if 1.78 L were used in the above reaction is
0.453 M (answer 2)
Calculation
find the moles of water produced = mass/molar mass
= 14.5 g /18 g/mol = 0.806 moles
by use of of mole ratio between H2So4 to H2O which is 1:1 the moles of H2SO4 is also = 0.806 moles
Molarity of H2SO4 is therefore = moles/volume in liters
= 0.806 mol/ 1.78 L = 0.453 M (answer 2)