The answer to yo question is ( it has three OH groups).
Answer:
Radiation effects on electrical equipment depend on the equipment and on the type of ionizing radiation to which it is exposed.
First, beta radiation has little, if any, effect on electrical equipment because this type of ionizing radiation is easily shielded. The equipment housing and the construction of the parts within the housing will protect the equipment from beta-radiation (high-energy electrons) exposure.
Gamma radiation is penetrating and can affect most electrical equipment. Simple equipment (like motors, switches, incandescent lights, wiring, and solenoids) is very radiation resistant and may never show any radiation effects, even after a very large radiation exposure. Diodes and computer chips (electronics) are much more sensitive to gamma radiation. To give you a comparison of effects, it takes a radiation dose of about 5 Sv to cause death to most people. Diodes and computer chips will show very little functional detriment up to about 50 to 100 Sv. Also, some electronics can be "hardened" (made to be not affected as much by larger gamma radiation doses) by providing shielding or by selecting radiation-resistant materials.
Some electronics do exhibit a recovery after being exposed to gamma radiation, after the radiation is stopped. But the recovery is hardly ever back to 100% functionality. Also, if the electronics are exposed to gamma radiation while unpowered, the gamma radiation effects are less.
Ionizing radiation breaks down the materials within the electrical equipment. For example, when wiring is exposed to gamma rays, no change is noticed until the wiring is flexed or bent. The wire's insulation becomes brittle and will break and may cause shorts in the equipment. The effect on diodes and computer chips is a bit more complex. The gamma rays disrupt the crystalline nature of the inside of the electronic component. Its function is degraded and then fails as more gamma radiation exposure is received by the electronic component.
Gamma rays do not affect the signals within the device or the signals received by the device. Nonionizing radiation (like radio signals, microwaves, and electromagnetic pulses) DO mess with the signals within and received by the device. I put a cheap electronic game in my microwave oven at home. It arced and sparked and was totally ruined. I didn’t waste any more of my time playing that game.
Hope this helps.
Explanation:
MARK ME AS BARINIEST PLS
The frequency of a wave represents B. the number of wave cycles that pass through a specific point within a given time.
The distance between two consecutive crests and the length of a wave are the <em>wavelength</em>.
The distance between the highest and lowest points of a wave is <em>twice the amplitude</em>.
Lithium sulfate is Li2SO4
Strontium chlorate is Sr(ClO3)2
Strontium sulfate is SrSO4
So the complete balanced chemical reaction for this is:
Li2SO4 (aq) + Sr(ClO3)2
(aq) --> SrSO4 (s) + 2 LiClO3
(aq)
This is a type of double replacement reaction since there
is an exchange of ions.
Answer:
1.53 × 10²² atoms Ag
Explanation:
Step 1: Define conversions
3.271 × 10⁻²² g = 1 atom
Step 2: Use Dimensional Analysis
= 1.52858 × 10²² atoms Ag
Step 3: Simplify
We have 3 sig figs.
1.52858 × 10²² atoms Ag ≈ 1.53 × 10²² atoms Ag