-17.555m/s
first I found the time it took for jacks stone to reach the bottom, using the formula vf = vi + at, vf and vi are final and initial velocities.
then i found the velocity at 6.6m using vf^2 = vi^2 + 2ad
and I found the time it took to get to 6.6m, so that I knew how long Jill waited to throw her stone, I used the formula d = t(vi+vf)/2, then i done total time - the time she waited, to get the time it took for there stones to hit the ground at the same time.
then to find the initial velocity of her throw I used the formula d = vit + (at^2)/2
Answer:
Answer:
6.68 x 10^16 m/s^2
Explanation:
Electric field, E = 3.8 x 10^5 N/C
charge of electron, q = 1.6 x 10^-19 C
mass of electron, m = 9.1 x 10^-31 kg
Let a be the acceleration of the electron.
The force due to electric field on electron is
F = q E
where q be the charge of electron and E be the electric field
F = 1.6 x 10^-19 x 3.8 x 10^5
F = 6.08 x 10^-14 N
According to Newton's second law
Force = mass x acceleration
6.08 x 10^-14 = 9.1 x 10^-31 x a
a = 6.68 x 10^16 m/s^2
Explanation:
We are given the mass of an <span>aluminum sculpture which is 145 kg and a horizontal force equal to 668 Newtons. The coefficient of friction can be determined by dividing the horizontal force by the weight of the object. In this case, 668 N / 145 * 9.8 equal to coeff of friction of 0.47</span>
Light is refracted when it crosses the interface from air to glass in which it moves more slowly.
Since the light speed changes at the interface, the wave length of the light must change too. The wave length decreases as the light enter the medium and the light wave changes direction.