The number of protons in the element.
The amount of electric charge that resides on each capacitor once it is fully charged is 0.37 C.
<h3>
Total capacitance of the circuit</h3>
The total capacitance of the circuit is calculated as follows;
Capacitors in series;
1/Ct = 1/8 + 1/7.5
1/Ct = 0.25833
Ct = 3.87 mF
Capacitors is parallel;
Ct = 3.87 mF + 12 mF + 15 mF
Ct = 30.87 mF
Ct = 0.03087 F
<h3>Charge in each capacitor</h3>
Q = CV
Q = 0.03087 x 12
Q = 0.37 C
Thus, the amount of electric charge that resides on each capacitor once it is fully charged is 0.37 C.
Learn more about capacitors here: brainly.com/question/13578522
#SPJ1
2000÷330=6.06 repatant so the answer would be about 6.06 seconds
The question is asking to calculate the tension that the string has to adjust the string so that when vibrating in its second overtone, it produces sound of wavelength of 0.761m, base on my calculation, the calculation must be done by the formula of <span>v=λf</span><span>., I hope this would help </span>
Answer:
a) variation of the energy is equal to the work of the friction force
b) W = Em_{f} -Em₀
, c) he conservation of mechanical energy
Explanation:
a) In an analysis of this problem we can use the energy law, where at the moment the mechanical energy is started it is totally potential, and at the lowest point it is totally kinetic, we can suppose two possibilities, that the friction is zero and therefore by equalizing the energy we set the velocity at the lowest point.
Another case is if the friction is different from zero and in this case the variation of the energy is equal to the work of the friction force, in value it will be lower than in the calculations.
b) the calluses that he would use are to hinder the worker's friction force and energy
W = Em_{f} -Em₀
N d = ½ m v² - m g (y₂-y₁)
y₂-y₁ = 35 -10 = 25m
c) if there is no friction, the physical principle is the conservation of mechanical energy
If there is friction, the principle is that the non-conservative work is equal to the variation of the energy