Answer:
Remember that for a square of height H and length L, the area will be:
A = H*L
In this case, we know that the height is H = 4 units.
And the area is up to 48 square units
This means that the maximum possible area of this rectangle is 48 square units.
Then we have:
A ≤ 48 square units.
And we also could add:
0 square units < A ≤ 48 square units.
Now we can replace A by H*L = L*(4units)
0 square units < L*(4 units) ≤ 48 square units.
Now we need to divide all 3 sides by 4 units.
(0 square units)/(4 units) < L ≤ (48 square units)/(4 units)
0 units < L ≤ 12 units.
This is the range of lengths that Saritha can use to reconstruct the rectangle.
Now if we define b as the length of the bases, then we will use:
b = height = 4units.
Then:
1b = 4units.
(1 b/4units) = 1
This means that:
12 units = (12 units)*1 = (12 units)*(1 b/4units) = (12/4) b = 3 b
Then the range of possible values of L is:
0b < L ≤ 3b
The answer is A you need to multiply the number of buquets then add it to thr price of the vase
The denominator of the first term is a difference of squares, such that
4<em>a</em> ² - <em>b</em> ² = (2<em>a</em>)² - <em>b</em> ² = (2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)
So you can write the fractions as
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)/(2<em>a</em> + <em>b</em>)
Multiply through the second fraction by 2<em>a</em> - <em>b</em> to get a common denominator:
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)²/((2<em>a</em> + <em>b</em>) (2<em>a</em> - <em>b</em>))
((4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²) / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
Expand the numerator:
(4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²
(4<em>a</em> ² + <em>b</em> ²) - (4<em>a</em> ² - 4<em>ab</em> + <em>b</em> ²)
4<em>ab</em>
<em />
So the original expression reduces to
4<em>ab</em> / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
or
4<em>ab</em> / (4<em>a</em> ² - <em>b</em> ²)
upon condensing the denominator again.
Answer:
that is the solution to the question