Answer:
Nuclear Forces
Explanation:
The type of force that holds the nucleus of an atom together is called Nuclear Forces.
The values of these two forces are equal. Your weight on Earth is equal to the Earth's weight on you. When you and the Earth fall toward each other, your acceleration is greater than the Earth's acceleration, because your mass is less than the Earth's mass.
Answer:
<em>There will be a huge problem of holding the wire strands together, and the power losses will also be amplified.</em>
Explanation:
The force per unit length on two current carrying conductors, lying parallel to each other is proportional to the product of the current through the conductors, and inversely proportional to their distance apart. This force is attractive if the current flows through these conductors in the same direction, and is repulsive if it flows in the opposite direction.
For the strand of wire that make up a high voltage wire bundle, there will be a force of attraction pulling the wires closer to each other, and they will experience the maximum pulling force possible, since they lie next to each other. This force helps to hold these wires in a high tension wire strand together, limiting the area, and reducing "skin effect."
In the case that this wires in the wire strand acts in opposite of the known behavior, the wires will repel and push each other apart. This pushing apart will increase power loss due "skin effect" which is increased by an increase in exposed surface area of the wire strands. This will pose a big problem for high tension transmission.
Answer:
a = 0.1067 [m/s²]
Explanation:
In order to solve this problem, we must first draw a free body diagram with the forces acting on it.
a)
In the attached image we can find the free body diagram.
b)
The net force can be found by performing a sum of forces on the X-axis, these forces are seen in the free body diagram.
∑Fx = Fr
where:
Fr = resultant force [N] (units of Newtons)
c)
Acceleration can be found by means of Newton's second law, which tells us that the sum of the forces in a body or the resulting force is equal to the product of mass by acceleration.
∑F = m*a
where:
m = mass = 2250 [kg]
a = acceleration [m/s²]