The magnitude of the electrical force between a pair of charged particles is 4 Times as much when the particles are moved half as far apart.
This can be easily understood by Columb's law,

which state's that the amount of electrical force experienced by two charged particles is inversely proportional to the square of the distance between them.
∴ 
Now, we know the new distance is half the original distance,


The electrical force of attraction or electrostatic force of attraction between two charged particles refers to the amount of attractive or repulsive force that exists between the two charges. This can be calculated by Columb's Law.
A charged particle in physics is a particle that has an electric charge. It might be an ion, such as a molecule or atom having an excess or shortage of electrons in comparison to protons. The same charge is thought to be shared by an electron, a proton, or another primary particle.
Learn more about electrical force here
brainly.com/question/2526815
#SPJ4
The antacid is basic so it neutralizes acidity or lowers it. Then if it goes into the esophagus, it's not as strong and it doesn't hurt, and it also calms your stomach because the acidity in your stomach is also lower. Antacids are therefore taken by many people, especially as they grow older and things like heartburn become more common.
Answer:
100,800 Jkg
The heat that is used to change the state of a mater is called latent heat.
In this case it is converting ice to water and it is called latent heat of fusion.
It is given by:
Heat = mc
where m is the mass of ice and l is the specific latent heat of fusion of ice.
l = 0.336 MJ
Heat = 0.3 × 0.336 MJ
= 0.3 × 0.336 × 10⁶
= 100,800 Jkg
Answer:
wire 66.0 cm long carries a 0.750 A current in the positive direction of an x axis through a magnetic field $$\vec { B } = ( 3.00 m T ) \hat { j } ...
Top answer · 1 vote
1 year = (365 / 121) = 3.02 half-lifes. Let's call it 3 .
The amount of radioactive isotope remaining after 3 half-lifes is
(1/2) x (1/2) x (1/2) = 1/8
A year after the medical lab received the 24 kg of W-181,
there will still be 24 kg of stuff in the container.
But only 3 kg of it will still be W-181. The other 21 kg will be
whatever substances W-181 becomes when it decays.
Sadly, even the 3 kg of good stuff won't be usable anymore ...
it'll be thoroughly mixed with the 21 kg of junk. It would be harder
and more expensive to try and separate them than to buy a new
can of pure W-181, and USE it before 7/8 of it has deteriorated.