A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat, may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements (such as a volume control or a lamp dimmer), or as sensing devices for heat, light, humidity, force, or chemical
Answer:
His journey took him 3 hours 15 minutes.
Explanation: 4 miles every hour. So 1 hr is equal to 4 miles, 2 hrs is equal to 8 miles, 3 hrs is equal to 12 miles. Now he just has 1 miles left, and since it takes him a hour to cycle 4 miles, 60 divided by 4 is 15. Therefore, 1 mile is equal to 15 minutes.
Answer:
a) v = 0.8 m / s
, b)
= 0.777 m / s
, c) ΔK = 0.93 J
Explanation:
This exercise can be solved using the concepts of moment, first let's define the system as formed by the two blocks, so that the forces during the crash have been internal and the moment is conserved.
They give us the mass of block 1 (m1 = 100kg, its kinetic energy (K = 32 J), the mass of block 2 (m2 = 3.00 kg) and that it is at rest (v₀₂ = 0)
Before crash
po = m1 vo1 + m2 vo2
po = m1 vo1
After the crash
= (m1 + m2) 
a) The initial speed of the block of m1 = 100 kg, let's use the kinetic energy
K = ½ m v²
v = √2K / m
v = √ (2 32/100)
v = 0.8 m / s
b) The final speed,
p₀ =
m1 v₀1 = (m1 + m2) 
= m1 / (m1 + m2) v₀₁
The initial velocity is calculated in the previous part v₀₁ = v = 0.8 m / s
= 100 / (3 + 100) 0.8
= 0.777 m / s
c) The change in kinetic energy
Initial K₀ =
K₀ = 32 J
Final
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.777²
= 31.07 J
ΔK =
- K₀
ΔK = 31.07 - 32
ΔK = -0.93 J
As it is a variation it could be given in absolute value
Part D
For this part s has the same initial kinetic energy K = 32 J, but it is block 2 (m2 = 3.00kg) in which it moves
d) we use kinetic energy
v = √ 2K / m2
v = √ (2 32/3)
v = 4.62 m / s
e) the final speed
v₀₂ = v = 4.62 m/s
p₀ = m2 v₀₂
m2 v₀₂ = (m1 + m2) 
= m2 / (m1 + m2) v₀₂
= 3 / (100 + 3) 4.62
= 0.135 m / s
f) variation of kinetic energy
= ½ (m1 + m2)
²
= ½ (3 + 100) 0.135²
= 0.9286 J
ΔK = 0.9286-32
ΔK = 31.06 J
Answer:
An indirect measurement of the speed of molecules is temperature