1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
15

1. Which of the following is not an example of friction?

Physics
1 answer:
mario62 [17]3 years ago
8 0

ueirudjrufu rhfyrhfy. fur dhrbrhfbf

You might be interested in
Unpolarized light with intensity I0I0I_0 is incident on an ideal polarizing filter. The emerging light strikes a second ideal po
zvonat [6]

Answer:

0.293I_0

Explanation:

When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.

Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

I_1=\frac{I_0}{2}

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

I_2=I_1 cos^2 \theta

where

\theta is the angle between the axes of the two polarizer

Here we have

\theta=40^{\circ}

So the intensity after the 2nd polarizer is

I_2=I_1 (cos 40^{\circ})^2=0.587I_1

And substituting the expression for I1, we find:

I_2=0.587 (\frac{I_0}{2})=0.293I_0

5 0
3 years ago
How many atoms are in the formula CH4? <br><br> A ) 2 <br><br> B ) 4 <br><br> C ) 5 <br><br> D ) 6
Rufina [12.5K]
B) 4 is the answer for atoms in CH4
6 0
3 years ago
Read 2 more answers
Using diagram differentiate between solenoid and a toroid
damaskus [11]

The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.


The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.

1 == toroid


2= solenoid


3 0
3 years ago
A(n) 55.5 g ball is dropped from a height of 53.6 cm above a spring of negligible mass. The ball compresses the spring to a maxi
Serggg [28]

Answer:

The spring force constant is  k=243\ \frac{N}{m} .

Explanation:

We are told the mass of the ball is m=0.0555\ kg, the height above the spring where the ball is dropped is h=0.536\ m,  the length the ball compresses the spring is d=0.04897\ m and the acceleration of gravity is 9.8\ \frac{m}{s^{2}} .

We will consider the initial moment to be when the ball is dropped and the final moment to be when the ball stops, compressing the spring. We supose that there is no friction so the initial mechanical energy E_{mi} is equal to the final mechanical energy E_{mf} :

                                                    E_{mf}=E_{mi}

Initially there is only gravitational potential energy because the force of the spring isn't present and the speed is zero. In the final moment there is only elastic potential energy because the height is zero and the ball has stopped. So we have that:

                                                   \frac{1}{2}kd^{2}=mgh

If we manipulate the equation we have that:

                                                    k=\frac{2mgh}{d^{2} }

                                         k=\frac{2\ 0.0555\ kg\ 9.8\frac{m}{s^{2}}\ 0.536\ m}{(0.04897)^{2}m^{2}}

                                              k=\frac{0.58306\ \frac{kgm^{2}}{s^{2}}}{2.398x10^{-3}m^{2}}

                                                     k=243\ \frac{N}{m}

                                                   

                             

5 0
4 years ago
If a system has 475 kcal of work done to it, and releases 5.00 × 102 kJ of heat into its surroundings, what is the change in int
Andrews [41]
First, we convert kcal to joules:
1 kcal = 4.184 kJ
475 kcal = 1987.4 kJ

Now, calculating the change in internal energy:

ΔU = Q + W; where Q is the heat supplied to the system and W is the work done on the system.

ΔU = -500 + 1987.4
ΔU = 1487.4 kJ
4 0
3 years ago
Read 2 more answers
Other questions:
  • A black hole is a ________
    10·1 answer
  • Which describes the rotational motion of a planet?
    15·1 answer
  • Which planets are closets to the sun?
    8·2 answers
  • A stone is dropped from a cliff and falls 9.44 meters. What is the speed of the stone when it reaches the ground?
    5·1 answer
  • Help plz anyone ?????
    6·1 answer
  • Two identical carts are free to move along a straight frictionless track. At time t1, cart X is moving at 2.0 m/s when it collid
    14·1 answer
  • Why do seat belts help protect passengers when a car stops quickly? Explain your answer in terms of forces and motions.
    9·1 answer
  • How strong is a black holes gravity?<br> (you will get a lot on notifications if you answer)
    7·2 answers
  • Differentiate conductors and insulators with the help of suitable examples
    11·2 answers
  • What does it mean for forces to be in equilibrium?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!