Answer:
Using Faraday's law;
ε= -N ∆ψ(B)/ ∆t;
∆t= -N ∆ψ(B)/ ε
Explanation:
Using Faraday's law; Faraday's law state that the induced emf is directly proportional to the rate of change of time of magnetic flux
ε= -N ∆ψ(B)/ ∆t;
Where ε= induced EMF, ∆ψ(B)/ ∆t is the rate of change of magnetic flux, ψ(B) = BA cos θ
θ= the angle between the magnetic field B and the normal surface area.
We can also calculate the direction of induced magnetic flux. At first, the field is perpendicular to the plane of the loop,the loop can rotate about either an horizontal or vertical axis passing through the mid point
0.0179 ohms for copper.
0.0184 ohms for annealed copper
Ď = R (A/l) where
Ď = electrical resistivity
R = electrical resistance of a uniform specimen
A = cross sectional area
l = length
Solve for R by multiplying both sides by l/A
R = Ď(l/A)
The cross section of the wire is pi * 1^2 mm = 3.14159 square mm = 3.14159e-6 square meters.
The length is 3 meters. So l/A = 3/3.14159e-6 = 9.5493e5
Ď for copper is 1.68e-8 so 1.68e-8 * 9.5493e5 = 1.60e-2 ohms at 20 C
But copper has a temperature coefficient (α) of 0.00386 per degree C.
So the resistance value needs to be adjusted based upon how far from 20 C the temperature is.
50 - 20 = 30 C
So 0.00386 * 30 = 0.1158 meaning that the actual resistance at 50 C will be 11.58% higher.
So 1.1158 * 0.016 = 0.0179 ohms.
If you're using annealed copper, the values for Ď and the temperature coefficient change.
Ď = 1.72e-8
α = 0.00393
Doing the math, you get
1.72e-8 * 9.5493e5 * (1 + 30 * 0.00393) = 0.0184 ohms
The fertilised ovule<span> goes on to form a seed, which contains a food store and an embryo that </span>will<span> later </span>grow into<span> a new plant</span>
Answer:
B
Explanation:
Transformation of energy involves conversion of energy from one form to another for example our movement around involves the conversion of chemical energy stored in the food we eat to other forms of energy such as kinetic energy for the movement, electrical energy in the neurons for impulses and others
The ball posses gravitational potential energy since it is held at a displacement to the ground ( zero point) and when released, the gravitational potential energy is converted to kinetic energy which leads to the fall of the ball until it is at zero displacement to the earth. The board likewise when bent to its maximum extent stored elastic potential energy as a result of the partial displacement of its constituent particle provided it is not stretch beyond its elastic limit which can lead to deformation of the board and the elastic potential energy lost.
Explanation:
Given that,
A student travels 11 m north and then turns around to travel 25 m south.
Total time, t = 12 s
The total distance or the total path covered by the student is equal to 11 m + 25 m = 36 m
Displacement of the student or the shortest path covered is d = 25-11 = 14 m
(a) The student's average speed = total distance/total time

(b) The student's average velocity = total displacement/total time
