Answer:
In standard GR, nothing exists at the center of a black hole. The center of a black hole is a singularity, and because GR fails at that point it is simply removed from the manifold. That means that the singularity is not part of spacetime.
To answer your question more realistically, we believe that GR is an approximate theory that fails well before you reach the center. Unfortunately, we have no good alternative theory with which to answer the question in the region where GR fails. We simply don’t have any data from that regime and it is very hard to formulate a good theory without data. So there very well could be time at the center, but we simply don’t have a good way to even guess.
The answer is disorder. It would be really hard to explain without being too complicated, but the entropy is the number of possible states that a system can realize under given conditions.
Acceleration is the change of velocity, and velocity is the change of distance. The opposite of finding change, or differentiation, is integration.
Acceleration = 1.3 m/s²
Velocity: ∫ 1.3 dx = 1.3x + c m/s
Distance: ∫ 1.3x dx = 1.3x²/2 + c m
Distance run: 1.3*3²/2 = 5.85 m
<em>What</em><em> </em><em>bad</em><em> </em><em>thing</em><em> </em><em>happened</em><em>?</em>
Answer:
Explanation:
30 km/h b. 60 km/h c. 15 km/h d. 2 km/h. The answer is 15km/h. The rate will be the same. 30km / 2hr = _km / hr. By the law of equivalent fractions ...
In both scenarios, the position - time graph will be a linear graph, since the speed is constant, so your position is moving at a consistent pace.