Answer:
the distance in meters traveled by a point outside the rim is 157.1 m
Explanation:
Given;
radius of the disk, r = 50 cm = 0.5 m
angular speed of the disk, ω = 100 rpm
time of motion, t = 30 s
The distance in meters traveled by a point outside the rim is calculated as follows;

Therefore, the distance in meters traveled by a point outside the rim is 157.1 m
Answer:
2 J
Explanation:
A charged capacitor of capacitance
with energy of 7.54 J, is connected in parallel with another capacitor
, so the charge is equally distributed between them.
(a) The energy stored in the capacitor before it being connected to the other capacitor is:

The energy stored in the electric field is the sum of the energies of the two capacitors:

since the charge equally distributed,
=
=
. and since they are connected in parallel the potential difference on both of them is the same
:

hence,

Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
(4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg
force of gravity = (mass) x (acceleration of gravity) = (360 kg) x (9.8 m/s²) = (360 x 9.8) kg-m<span>/s² </span><span>= </span>3,528 newtons .
The formula for the rotational kinetic energy is

where I is the moment of inertia. This is just mass times the square of the perpendicular distance to the axis of rotation. In other words, the radius of the propeller or this is equivalent to the length of the rod. ω is the angular velocity. We determine I and ω first.

ω = 573 rev/min * (2π rad/rev) * (1 min/60 s) = 60 rad/s
Then,

Answer:
(a) k = 30.33 N/m
(b) a = 9.8 m/s²
Explanation:
First, we need to find the force acting on the bungee jumper. Since, this is a free fall motion. Therefore, the force must be equal to the weight of jumper:
F = W = mg
F = (65 kg)(9.8 m/s²)
F = 637 N
(a)
Now applying Hooke's Law:
F = k Δx
where,
k = spring constant = ?
Δx = change in length of bungee cord = 33 m - 12 m = 21 m
Therefore,
637 N = k(21 m)
k = 637 N/21 m
<u>k = 30.33 N/m</u>
<u></u>
(b)
Since, this is free fall motion. Thus, the maximum acceleration will be the acceleration due to gravity.
a = g
<u>a = 9.8 m/s²</u>