Answer:
11.56066 m/s
Explanation:
m = Mass of person
v = Velocity of person = 13.4 m/s
g = Acceleration due to gravity = 9.81 m/s²
v' = Velocity of the person in the second
The kinetic and potential energy will balance each other at the surface

Height of the cliff is 9.15188 m
Let height of the fall be h' = 2.34 m

The speed of the person is 11.56066 m/s
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
Answer:
r is the separation between the two spherical bodies
Answer:
In 5 years or so, the sun will be awash in sunspots and more prone to violent bursts of magnetic activity.
Explanation
once the magnetic field weakens the area and cold plasma enters the area of the sunspot
A its Stratosphere, Sorry I didn't see your answer, its bilogy I think not physics.. :)