Answer:
mechanical energy
Explanation:
Mechanical energy is the combination of both potential energy and kinetic
Mechanical energy can be divided as
1)kinetic energy, this energy vis regarded as the energy of motion
2) potential energy which is the stored energy of position.
Mechanical energy reffered to as
motion energy this energy is responsible for the movement of an object based on its position as well as motion.
Mechanical energy= U + K
Where U= potential energy
K= Kinectic energy
As the tire is sitting on top of a ramp, it posses "potential energy" as it is released and rolls down the ramp the potential is converted to Kinectic energy
Answer: Add an incline or grade to the road track.
Explanation:
Refer to the figure shown below.
When a vehicle travels on a level road in a circular path of radius r, a centrifugal force, F, tends to make the vehicle skid away from the center of the circular path.
The magnitude of the force is
F = mv²/r
where
m = mass of the vehicle
v = linear (tangential) velocity to the circular path.
The force that resists the skidding of the vehicle is provided by tractional frictional force at the tires, of magnitude
μN = μW = μmg
where
μ = dynamic coefficient of friction.
At high speeds, the frictional force will not overcome the centrifugal force, and the vehicle will skid.
When an incline of θ degrees is added to the road track, the frictional force is augmented by the component of the weight of the vehicle along the incline.
Therefore the force that opposes the centrifugal force becomes
μN + Wsinθ = W(sinθ + μ cosθ).
Answer:
-48 N
Explanation:
mass of door (m) = 4 kg
acceleration of the door = 12 m/s^{2}
force exerted by the person = 48 N
From Newton's third law of motion, action and reaction are equal but opposite. Therefore the force exerted on the door by the person which is 48 N will be the same as the force exerted on the person by the door but opposite in its direction, and this would be - 48 N
Answer:
All i kno is that that kid ain't gonna be ok
Explanation:
if u tell me how to do it ill do it