The answer to this question would be:3850ft
To answer this question, you need to convert the speed velocity from miles/hour into feet/second. The equation would be: 750 miles/hour x 5280 foot/mile x 1 hour/3600second = 1100 ft/s
Then multiply the time with the velocity= 3.5 second x 1100 ft/s= 3850ft
Answer:
a. 3.07 b. 1.26
Explanation:
Given that A = -3.07i + 3.17j and B = b1i + b1j and C = A + B = 0i + 4.43j
Since A + B = -3.07i + 3.17j + b1i + b2j
= (-3.07 + b1)i + (3.17 + b2)j
So,(-3.07 + b1)i + (3.17 + b2)j = 0i + 4.43j
Comparing components,
-3.07 + b1 = 0 (1) and 3.17 + b2 = 4.43 (2)
a. From (1), b1 = 3.07
b. From(2) b2 = 4.43 - 3.17 = 1.26
Answer:
Power_input = 85.71 [W]
Explanation:
To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.

where:
W = work [J] (units of Joules)
F = force [N] (units of Newton)
d = distance [m]
We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.
Now replacing:
![W = (80*10)*3\\W = 2400 [J]](https://tex.z-dn.net/?f=W%20%3D%20%2880%2A10%29%2A3%5C%5CW%20%3D%202400%20%5BJ%5D)
Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.

where:
P = power [W] (units of watts)
W = work [J]
t = time = 40 [s]
![P = 2400/40\\P = 60 [W]](https://tex.z-dn.net/?f=P%20%3D%202400%2F40%5C%5CP%20%3D%2060%20%5BW%5D)
The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.
![Effic=0.7\\Effic=P_{required}/P_{introduced}\\P_{introduced}=60/0.7\\P_{introduced}=85.71[W]](https://tex.z-dn.net/?f=Effic%3D0.7%5C%5CEffic%3DP_%7Brequired%7D%2FP_%7Bintroduced%7D%5C%5CP_%7Bintroduced%7D%3D60%2F0.7%5C%5CP_%7Bintroduced%7D%3D85.71%5BW%5D)
<span>There's nothing on that list that may be damaged by increase in solar activity.
</span>
The modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly (option B).
<h3>What is kinetic energy?</h3>
Kinetic energy is the energy possessed by an object because of its motion. The kinetic energy equal (nonrelativistically) to one half the mass of the body times the square of its speed.
According to this question, an engineer is designing a small toy car that will be launched from rest. The engineer wants to maximize the kinetic energy of the car when it is launched by a compressed spring.
However, he can only make one adjustment to the initial conditions of the car. Considering the fact that the mass of an object is directly proportional to the kinetic energy.
This suggests that the modifications to the car design that would have the greatest effect on increasing the kinetic energy of the car is to increase the mass of the car slightly.
Learn more about kinetic energy at: brainly.com/question/12669551
#SPJ1