Explanation:
Boiling is defined as a process in which vapor pressure of a liquid substance becomes equal to the atmospheric pressure.
During this change liquid and vapors remain in equilibrium and the equation for this change is as follows.
Therefore, when boiling takes place then average kinetic energy of particles in liquid phase equals to the average kinetic energy of particles in vapor phase.
Hence, we can increase the kinetic energy of particles in liquid phase by increasing the temperature because kinetic energy is directly proportional to temperature as follows.
K.E =
Sonia observed that the two balloons repelled each other. This is because both balloons acquired the same charge when she rubbed them with the piece of wool, and like charges repel each other.
Answer:
Rb+
Explanation:
Since they are telling us that the equivalence point was reached after 17.0 mL of 2.5 M HCl were added , we can calculate the number of moles of HCl which neutralized our unknown hydroxide.
Now all the choices for the metal cation are monovalent, therefore the general formula for our unknown is XOH and we know the reaction is 1 equivalent acid to 1 equivalent base. Thus we have the number of moles, n, of XOH and from the relation n = M/MW we can calculate the molecular weight of XOH.
Thus our calculations are:
V = 17.0 mL x 1 L / 1000 mL = 0.017 L
2.5 M HCl x 0.017 L = 2.5 mol/ L x 0.017 L = 0.0425 mol
0.0425 mol = 4.36 g/ MW XOH
MW of XOH = (atomic weight of X + 16 + 1)
so solving the above equation we get:
0.0425 = 4.36 / (X + 17 )
0.7225 +0.0425X = 4.36
0.0425X = 4.36 -0.7225 = 3.6375
X = 3.6375/0.0425 = 85.59
The unknown alkali is Rb which has an atomic weight of 85.47 g/mol
Answer:
Autotrophs
Explanation:
Autotrophs make their own food, or produce food for themselves through the process of photosynthesis. Therefore, we can say that autotrophs are also producers. Some examples of producers are plants, algae, and some types of bacteria.