Answer:
0.16joules
Explanation:
Using the relation for The gravitational potential energy
E= Mgh
Where,
E= Potential energy
h = Vertical Height
M = mass
g = Gravitational Field Strength
To find the vertical component of angle of launch Where the angle is 22°
h= sin theta
So E = mghsintheta
= 0.18 x 0.98 x 0.253 sin22
=0.16joules
Explanation:
Gravity is a force because it pulls down on objects.
Answer:
Explanation:
Diameter of pool = 12 m
radius of pool, r = 6 m
Total height raised, h = 3 + 2.5 = 5.5 m
density of water, d = 1000 kg/m³
Mass of water, m = Volume of water x density
m = πr²h x d
m = 3.14 x 6 x 6 x 5.5 x 1000
m = 113040 kg
Work = m x g x h
W = 113040 x 9.8 x 5.5
W = 6092856 J
Answer: a) for 150 Angstroms 6.63 *10^-3 eV; b) for 5 Angstroms 6.02 eV
Explanation: To solve this problem we have to use the relationship given by De Broglie as:
λ =p/h where p is the momentum and h the Planck constant
if we consider the energy given by acceleration tube for the electrons given by: E: e ΔV so is equal to kinetic energy of electrons p^2/2m
Finally we have:
eΔV=p^2/2m= h^2/(2*m*λ^2)
replacing we obtained the above values.
Answer:
stress tension tensile strength
Explanation:
The maximum stress which a material can withstand when it is pulled apart is its: stress tension tensile strength.