Answer:
(a) attached below
(b)

(c) 
(d)
Ω
(e)
and 
Explanation:
Given data:





(a) Draw the power triangle for each load and for the combined load.
°
°
≅ 

≅ 
The negative sign means that the load 2 is providing reactive power rather than consuming
Then the combined load will be


(b) Determine the power factor of the combined load and state whether lagging or leading.

or in the polar form
°

The relationship between Apparent power S and Current I is

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.
(c) Determine the magnitude of the line current from the source.
Current of the combined load can be found by


(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω


Ω
(e) Compute the magnitude of the current in each capacitor and the line current from the source.
Current flowing in the capacitor is

Line current flowing from the source is

Answer:
So it looks to me that, Yes, you can find 10-50 leds on Amazon. You just have to be specific and search 10-50 led Christmas lights for windows, or something along those lines. Also try filtering the results, and reading the descriptions and reviews. This should help you out, and if it doesn't then I'm sorry.
Good luck friend :)
Answer:
Check the explanation
Explanation:
to know the lift per unit span (N/m) that is expected to be measured when the wing attack angle is 4°
as well as the corresponding section lift coefficient and die moment coefficient .
Kindly check the attached image below to see the step by step explanation to the above question.
Answer:
Given that;
Jello there, see explanstion for step by step solving.
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
Explanation:
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
See attachment for more clearity