1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
3 years ago
11

Could I please get help with this​

Engineering
1 answer:
alex41 [277]3 years ago
5 0

Answer:

1.I_{xc} = 7.161458\overline 3 in.⁴

I_{yc} = 36.661458\overline 3 in.⁴

Iₓ = 28.6458\overline 3 in.⁴

I_y = 138.6548\overline 3 in.⁴

2. I_{xc} = 114.\overline 3 in.⁴

I_{yc} = 37.\overline 3 in.⁴

Iₓ = 457.\overline 3 in.⁴

I_y = 149.\overline 3 in.⁴

3. The maximum deflection of the beam is 2.55552 inches

Explanation:

1. The height of the beam having a rectangular cross section is h = 2.5 in.

The breadth of the beam, is = 5.5 in.

The moment of inertia of a rectangular beam through its centroid is given as follows;

I_{xc} = b·h³/12 = 5.5 × 2.5³/12 = 1375/192 = 7.161458\overline 3

I_{xc} = 7.161458\overline 3 in.⁴

I_{yc} = h·b³/12 = 2.5 × 5.5³/12 = 6655/192 = 36.661458\overline 3

I_{yc} = 36.661458\overline 3 in.⁴

The moment of inertia about the base is given as follows;

Iₓ = b·h³/3 = 5.5 × 2.5³/3 = 625/24 = 28.6458\overline 3

Iₓ = 28.6458\overline 3 in.⁴

I_y = h·b³/3 = 2.5 × 5.5³/3 = 6655/48= 138.6548\overline 3

I_y = 138.6548\overline 3 in.⁴

2. The height of the beam having a rectangular cross section is h = 7 in.

The breadth of the beam, b = 4 in.

The moment of inertia of a rectangular beam through its centroid is given as follows;

I_{xc} = b·h³/12 = 4 × 7³/12 = 114.\overline 3

I_{xc} = 114.\overline 3 in.⁴

I_{yc} = h·b³/12 = 7 × 4³/12 = 37.\overline 3

I_{yc} = 37.\overline 3 in.⁴

The moment of inertia about the base is given as follows;

Iₓ = b·h³/3 = 4 × 7³/3 = 457.\overline 3

Iₓ = 457.\overline 3 in.⁴

I_y = h·b³/3 = 2.5 × 5.5³/3 = 149.\overline 3

I_y = 149.\overline 3 in.⁴

3. The deflection, \delta _{max}, of a simply supported beam having a point load at the center is given as follows;

\delta_{max} = \dfrac{W \times L^3}{48 \times E \times I}

The given parameters of the beam are;

The length of the beam, L = 22 ft. = 264 in.

The applied load at the center, W = 750 lbs

The modulus of elasticity for Cedar = 10,000,000 psi

The height of the wood, h = 3 in.

The breadth of the wood, b = 5 in.

The moment of inertia of the wood, I_{xc} = b·h³/12 = 5 × 3³/12 = 11.25 in.⁴

By plugging in the given values, we have;

\delta_{max} = \dfrac{750 \times 264^3}{48 \times 10,000,000 \times 11.25} = 2.55552

The maximum deflection of the beam, \delta _{max} = 2.55552 inches

You might be interested in
In engineering, economic cost is a decision-making tangible factor. Group of answer choices True False
salantis [7]
Economic cost is a rescission making tangible factor true
8 0
3 years ago
Read 2 more answers
Advances in vehicle manufacturing technology have decreased the need for:
Llana [10]

Answer:

D large amounts of labor

Explanation:

7 0
3 years ago
Which one of these is not a successful budgeting strategy
Amiraneli [1.4K]

Answer:

I can't tell you that ANSWER because I need to see the answers they gave you to circle or something

6 0
3 years ago
Read 2 more answers
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
Strike441 [17]

Answer:

the elongation of the metal alloy is 21.998 mm

Explanation:

Given the data in the question;

K = σT/ (εT)ⁿ

given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,

strain-hardening exponent n = 0.22

we substitute

K = 345 / 0.02^{0.22

K = 815.8165 Mpa

next, we determine the true strain

(εT) = (σT/ K)^1/n

given that σT = 412 MPa

we substitute

(εT) = (412 / 815.8165 )^(1/0.22)

(εT) = 0.04481 mm

Now, we calculate the instantaneous length

l_i = l_0e^{ET

given that l_0 = 480 mm

we substitute

l_i =480mm × e^{0.04481

l_i =  501.998 mm

Now we find the elongation;

Elongation = l_i - l_0

we substitute

Elongation = 501.998 mm - 480 mm

Elongation = 21.998 mm

Therefore, the elongation of the metal alloy is 21.998 mm

6 0
3 years ago
State three characteristic of lines of magnetic flux​
stepladder [879]

Answer:

1. The magnetic flux line form a closed loop.

2. The magnetic flux line repel each other.

3. The magnetic flux line never intersect.

5 0
2 years ago
Read 2 more answers
Other questions:
  • A refrigerator has a cooling load of 50 kW. It has a COP of 2. It is run by a heat engine which consumes 50 kW of heat to supply
    12·1 answer
  • List the three main methods employed in dimensional analysis
    6·1 answer
  • Consider a sinusoidal oscillator consisting of an amplifier having a frequency-independent gain A (where A is positive) and a se
    6·1 answer
  • Select the correct answer. Which statement best describes a hydrogen fuel cell? A This device uses bioethanol as an additive to
    9·2 answers
  • What time ----–- the train arrve? ​​
    12·1 answer
  • Consider coaxial, parallel, black disks separated a distance of 0.20 m. The lower disk of diameter 0.40 m is maintained at 500 K
    13·1 answer
  • Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
    9·1 answer
  • Which lists the order of Energy Career Pathways from the source to the customer?
    9·2 answers
  • 2. What is the most obvious elements of design?<br> O color<br> O shape<br> O line<br> O texture
    11·1 answer
  • 9. A piece of Cherry wood is 5/4 x 4" X 4'<br> What is the length in inches?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!