1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
3 years ago
11

Could I please get help with this​

Engineering
1 answer:
alex41 [277]3 years ago
5 0

Answer:

1.I_{xc} = 7.161458\overline 3 in.⁴

I_{yc} = 36.661458\overline 3 in.⁴

Iₓ = 28.6458\overline 3 in.⁴

I_y = 138.6548\overline 3 in.⁴

2. I_{xc} = 114.\overline 3 in.⁴

I_{yc} = 37.\overline 3 in.⁴

Iₓ = 457.\overline 3 in.⁴

I_y = 149.\overline 3 in.⁴

3. The maximum deflection of the beam is 2.55552 inches

Explanation:

1. The height of the beam having a rectangular cross section is h = 2.5 in.

The breadth of the beam, is = 5.5 in.

The moment of inertia of a rectangular beam through its centroid is given as follows;

I_{xc} = b·h³/12 = 5.5 × 2.5³/12 = 1375/192 = 7.161458\overline 3

I_{xc} = 7.161458\overline 3 in.⁴

I_{yc} = h·b³/12 = 2.5 × 5.5³/12 = 6655/192 = 36.661458\overline 3

I_{yc} = 36.661458\overline 3 in.⁴

The moment of inertia about the base is given as follows;

Iₓ = b·h³/3 = 5.5 × 2.5³/3 = 625/24 = 28.6458\overline 3

Iₓ = 28.6458\overline 3 in.⁴

I_y = h·b³/3 = 2.5 × 5.5³/3 = 6655/48= 138.6548\overline 3

I_y = 138.6548\overline 3 in.⁴

2. The height of the beam having a rectangular cross section is h = 7 in.

The breadth of the beam, b = 4 in.

The moment of inertia of a rectangular beam through its centroid is given as follows;

I_{xc} = b·h³/12 = 4 × 7³/12 = 114.\overline 3

I_{xc} = 114.\overline 3 in.⁴

I_{yc} = h·b³/12 = 7 × 4³/12 = 37.\overline 3

I_{yc} = 37.\overline 3 in.⁴

The moment of inertia about the base is given as follows;

Iₓ = b·h³/3 = 4 × 7³/3 = 457.\overline 3

Iₓ = 457.\overline 3 in.⁴

I_y = h·b³/3 = 2.5 × 5.5³/3 = 149.\overline 3

I_y = 149.\overline 3 in.⁴

3. The deflection, \delta _{max}, of a simply supported beam having a point load at the center is given as follows;

\delta_{max} = \dfrac{W \times L^3}{48 \times E \times I}

The given parameters of the beam are;

The length of the beam, L = 22 ft. = 264 in.

The applied load at the center, W = 750 lbs

The modulus of elasticity for Cedar = 10,000,000 psi

The height of the wood, h = 3 in.

The breadth of the wood, b = 5 in.

The moment of inertia of the wood, I_{xc} = b·h³/12 = 5 × 3³/12 = 11.25 in.⁴

By plugging in the given values, we have;

\delta_{max} = \dfrac{750 \times 264^3}{48 \times 10,000,000 \times 11.25} = 2.55552

The maximum deflection of the beam, \delta _{max} = 2.55552 inches

You might be interested in
A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
MakcuM [25]

Answer:

Heater power = 425 watts

Explanation:

Detailed explanation and calculation is shown in the image below

6 0
3 years ago
53. The plan of a building is in the form of a rectangle with
schepotkina [342]

Answer: 150m

Explanation:

The following can be depicted from the question:

Dimensions of outer walls = 9.7m × 14.7m.

Thickness of the wall = 0.30 m

Therefore, the plinth area of the building will be:

= (9.7 + 0.30/2 + 0.30/2) × (14.7 × 0.30/2 + 0.30/2)

= 10 × 15

= 150m

7 0
3 years ago
When an electron in a valence band is raised to a conduction band by sufficient light energy, semiconductors start conducting __
garri49 [273]

Answer:

This band gap also allows semiconductors to convert light into electricity in photovoltaic cells and to emit light as LEDs when made into certain types of diodes. Both these processes rely on the energy absorbed or released by electrons moving between the conduction and valence bands.

Explanation:

On the internet

4 0
2 years ago
Which statements describe the motion of car A and car B? Check all that apply. Car A and car B are both moving toward the origin
vekshin1

Answer:

car a is moving faster than the car b

8 0
3 years ago
Explain 3 ways that people in sports use engineering to increase their performance?
LenKa [72]
Designing systems for manufacturing, motion analysis or impact testing;
building and testing prototypes;
analyzing the human body to prevent injury;
developing or designing new light weight materials that will be more comfortable and withstand greater impacts or forces;
7 0
2 years ago
Other questions:
  • "From the earth to the moon". In Jules Verne’s 1865 story with this title, three men went to the moon in a shell fired from a gi
    5·1 answer
  • At the instant shown, slider block B is moving with a constant acceleration, and its speed is 150 mm/s. Knowing that after slide
    13·1 answer
  • You are an engineer at company XYZ, and you are dealing with the need to determine the maximum load you can apply to a set of bo
    13·1 answer
  • Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of poun
    9·1 answer
  • potential difference is the work done in moving a unit positive charge from one point to another in an electric field. State Tru
    12·1 answer
  • PLEASE HELP ASAP!!! Thanks
    11·1 answer
  • How many steps are there in the problem-solving process?
    9·2 answers
  • Calculate the number of vacancies per cubic meter at 1000∘C for a metal that has an energy for vacancy formation of 1.22 eV/atom
    14·1 answer
  • Name the famous engineer in the world​
    10·2 answers
  • EverFi future smart pie chart
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!