Given:
density of air at inlet, 
density of air at inlet, 
Solution:
Now,

(1)
where
A = Area of cross section
= velocity of air at inlet
= velocity of air at outlet
Now, using eqn (1), we get:

= 1.14
% increase in velocity =
=114%
which is 14% more
Therefore % increase in velocity is 14%
Note: The answer choices are :
a) Increased
b) Decreased
c) stayed the same
Answer:
The correct option is Increased
The magnitude of the electric field potential difference between the wingtips increases.
Explanation:
The magnitude of the electric potential difference is the induced emf and is given by the equation:

where l = length
v = velocity
B = magnetic field
As the altitude of the airplane increases, the magnetic flux becomes stronger, the speed of the airplane becomes perpendicular to the magnetic field, i.e.
,
the induced emf = vlB, and thus increases.
The magnitude of the electric field potential difference between the wingtips increases
Answer:
The inner and outer surfaces of a 0.5-cm thick 2-m by 2-m window glass in winter are 10°C and 3°C, respectively. If the thermal conductivity of the glass
Explanation:
Answer:

Explanation:
Given that,
Radius, r = 2 m
Velocity, v = 1 m/s
We need to find the magnitude of the centripetal acceleration. The formula for the centripetal acceleration is given by :

So, the magnitude of centripetal acceleration is
.
The nebular hypothesis is the name of the theory where gravitational attraction caused bits of matter to collapse, eventually forming a solar system.
Hope this helps :)