Most transition metal form more than one cation but aluminum forms the Al3+ cation only.
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
Answer:
D. 4.75 m/s west
Explanation:
You can immediately get the answer once you know the formula for<em> velocity.</em>
- The formula for velocity is: Velocity (V) =

The distance is 95 meters while the time is 20 seconds. All you have to do is to divide <u>95 meters by 20 seconds</u>.
Let's solve:
- V =

- V =

- V = 4.75 meters per second
Since Brenda is going west with her her skateboard, then you have to add <em>west </em>as her direction.
Brenda's velocity is 4.75 m/s west.
Answer:
Its B
Explanation: I did the test passed btw
F. <em>None of the above
</em>
<em>No O atoms are present</em> as reacting substances, only O_2 and H_2O molecules.
O_2 + 2H_2O + 2e^(-) → 4OH^(-)
We must use <em>oxidation numbers</em> to decide whether oxygen or water is the substance reduced.
The oxidation number of O changes from 0 in O_2 to -2 in OH^(-).
A decrease in oxidation number is <em>reduction</em>, so O_2 is the substance reduced.
The oxidation number of O is -2 in both H_2O and OH^(-), so water is <em>neither oxidized nor reduced</em>.