For mild to moderate reactions, treatment involves removing the stinger, washing the area with soap and water, and applying cold compresses or ice. Creams to the affected area can help reduce discomfort. Severe reactions may need epinephrine.
Answer:
Half-life = 3 minutes
Explanation:
Using the radioactive decay equation we can solve for reaction constant, k. And by using:
K = ln2 / Half-life
We can find half-life of polonium-218
Radioactive decay:
Ln[A] = -kt + ln [A]₀
Where:
[A] could be taken as mass of polonium after t time: 1.0mg
k is Reaction constant, our incognite
t are 12 min
[A]₀ initial amount of polonium-218: 16mg
Ln[A] = -kt + ln [A]₀
Ln[1.0mg] = -k*12min + ln [16mg]
-2.7726 = - k*12min
k = 0.231min⁻¹
Half-life = ln 2 / 0.231min⁻¹
<h3>Half-life = 3 minutes</h3>
6.4 * 6.02 * 10^23 = 3.8528*10^24 atoms
Don't let the fact that it's vanadium throw you off, avagadros constant stays the same for all elements
Answer:
2 KClO3 (s) = 2 KCl (s) + 3 O2 (g)
2.5 g x g
Explanation:
x g O2 = 2.5 g KClO3 x (1 mol KClO3) x (3 mol O2) x (32 g O2) = 0.98 g O2
(122.5 g KClO3) (2 mol KClO3) (1 mol O2)
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
2.5 g x g
x g KCl = 2.5 g KClO3 x (1 mol KClO3) x (2 mol KClO3) x (74.5 g KCl) = 1.52 g KCl
(122.5 g KClO3) (2 mol KClO3) (1 mol KCl)
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
x mol 10 mol
x mol KClO3 = 10 mol O2 x (2 mol KClO3) = 6.7 mol KClO3
(3 mol O2)