Answer:
Mo(CO)5 is the intermediate in this reaction mechanism.
Explanation:
The reaction mechanism describes the sequence of elementary reactions that must occur to go from reactants to products. Reaction intermediates are formed in one step and then consumed in a later step of the reaction mechanism.
In this reaction mechanism, Mo(CO)5 is the product of 1st reaction and then it is used as a reactant in 2nd reaction. So, Mo(CO)5 is the reaction intermediates.
The overall balanced equation would be,
Mo(CO)6 + P(CH3) ↔ CO + Mo(CO)5 + P(CH3)3
Answer:
6H2 + P4→ 4PH3
Explanation:
Phosphorus has 4 in it and hydrogen has 3 in it. in order to balance it, we have to put 4 in front of phosphine so that the phosphorus on the product side has an equal amount as to the one on the reactant side.
the only one left to balance is hydrogen and so in order to balance it we put a 6 on h2 because the hydrogen in the product size becomes 12 (4 * 3).
therefore the hydrogen on the reactant side becomes 12 as well (6 * 2)
Answer:

Explanation:
Hello,
In this case, we can compute the required volume by using the ideal gas equation as shown below:

Thus, solving for the volume and considering absolute temperature (in Kelvins), we obtain:

Best regards.