We will see that the volume of the unit cell is 144,070,699.06 pm^3
<h3>
How to get the volume of a body-centered cubic unit cell?</h3>
In a body-centered cubic unit cell, the side length of the cube is given as:

Where R is the radius of the atom.
And the volume of a cube is the side length cubed, then we can see that the volume of our cube will be:

Solving that we get:

This is the approximated volume of the unit cell.
If you want to learn more about unit cell structures, you can read:
brainly.com/question/13110055
Answer - Inter-molecular attractions
Explanation-
As we know everything around us is made up of matter that means everything has molecules as their basic structure. The state of anything is decided by the spaces between the molecules.
The state of the objects that have strong inter-molecular attractions a solid and gradually the lesser will be in state of liquid and gas. The attraction between the molecules is overcome only when a certain amount of energy is provided from outside.
Answer:
9 mL.
Explanation:
Dosage of insulin is 90 mg
The concentration of insulin is 10 mg/mL
We need to find how many milliliters of the solution do you need to give the patient. It can be calculated as follows :

So, 9 mL of the solution is to be given to the patient.
Answer:
(1) 2Al(s) + 2NaOH(aq) + 6H2O(l) ↔2Na[Al(OH)4](aq) + 3H2(g)
∴ Kc = ( PH2³ * [Na[Al(OH)4]² ) / [NaOH]² = 11
(2) H2O(l) + SO3(g) ↔ H2SO4(aq)
∴ Kc = [ H2SO4 ] / PSO3 = 0.0123
(3) 2P4(s) + 6O2(g) ↔ 2P4O6(s)
∴ Kc = Kc = 1 / PO2∧6
Explanation:
(1) 2Al(s) + 2NaOH(aq) + 6H2O(l) ↔ 2Na[Al(OH)4](aq) + 3H2(g)
∴ O / Al: 0 → +2 ≡ 2e-
Na: +1 → +2
∴ R / H: +1 → 0
2 - Al - 2
2 - Na - 1
8 - O - 8
14 - H - 14
⇒ Kc = ( PH2³ * [Na[Al(OH)4]² ) / [NaOH]² = 11
(2) H2O(l) + SO3(g) ↔ H2SO4(aq)
1 - S - 1
4 - O - 4
2 - H - 2
⇒ Kc = [ H2SO4 ] / PSO3 = 0.0123
(3) 2P4(s) + 6O2(g) ↔ 2P4O6(s)
8 - P - 8
12 - O - 12
⇒ Kc = 1 / PO2∧6