Answer:
0.22mm
Explanation:
A far sighted person is a person suffering from long sightedness i.e such individual can only see far distant object clearly but not near distant object. The defect is corrected using convex lens.
Since convex lens is used, the focal (f) length of the lens is positive and the image distance (v) is also positive.
Using the lens formula,
1/f = 1/u + 1/v
Where u is the object distance = 0.35mm
v = 0.6mm
1/f = 1/0.35+1/0.6
1/f = 2.86 + 1.67
1/f = 4.53
f = 1/4.53
f = 0.22mm
The focal length of the contact lenses will be 0.22mm
The widely accepted hypothesis before that turned out wrong was the Earth-Centered theory or the Geocentric Theory. This was proposed by the philosopher Ptolemy. He came about to this hypothesis from hi observation that from the Earth's perspective, the celestial bodies like the Sun, stars and the moon, look like they rotate around the Earth each day and night. However, this was disproved by Galileo Galelei by his Heliocentric Theory. He observed through the telescope that the Venus also changes phases like the moon. However, he deduced that this is not possible from the positions of the Venus, Earth, Moon and Sun.
Explanation:
Total mass=100+10=110
Total weight=mass×gravitational field strength
=110×10
=1100N
Work done=force×distance
=1100×10
=11000J
<em>Please mark me as brainliest if this helped you!</em>
The periodic table is in increasing atomic mass. Hope this helped.
Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.