Answer:
4.91 x 10⁻⁷ m
Explanation:
the applicable formula is
v = fλ
where
v = velocity (i.e speed) = given as 3.0 x 10⁸ m/s
f = frequency = given asw 6.11 x 10¹⁴
λ = wavelength
if we rearrange the equation and substitute the values given above,
v = fλ
λ = v/f
= 3.0 x 10⁸ / 6.11 x 10¹⁴
= 4.91 x 10⁻⁷ m
1. 0.2 g/mL
The relationship between mass, density and volume of an object is

where
d is the density
m is the mass
V is the volume
For the object in this problem, we have
m = 10 g
V = 50 mL
Substituting into the equation,

2. 10 mL
In this exercise we know:
- The density of the object: d = 2 g/mL
- The mass of the object: m = 20 g
Therefore, we can re-arrange the previous equation to find the volume:

And substituting values into the equation, we find

Answer:
The speed of the boat is equal to 13.50 ft/s.
Explanation:
given,
1 nautical mile = 6076 ft
1 knot = 1 nautical mile /hour
1 knot = 6076 ft/hr
speed of boat = 8 knots
8 knots = 8 nautical mile /hour
=
= 13.50 ft/s
The speed of the boat is equal to 13.50 ft/s.
Answer:
Term 1 = (0.616 × 10⁻⁵)
Term 2 = (7.24 × 10⁻⁵)
Term 3 = (174 × 10⁻⁵)
Term 4 = (317 × 10⁻⁵)
(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.
Explanation:
(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²
mean measurements
Voltage, V = (403 ± 1) V,
σᵥ = 1 V, V = 403 V
Current, I = (2.35 ± 0.01) A
σᵢ = 0.01 A, I = 2.35 A
Coils radius, R = (14.4 ± 0.3) cm
σʀ = 0.3 cm, R = 14.4 cm
Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.
σᵣ = 0.2 cm, r = 7.1 cm
Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)
Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)
Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)
Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)
The relative value of the e/m ratio is a sum of all the calculated terms.
(σ ₑ/ₘ) / (e/m)
= (0.616 + 7.24 + 174 + 317) × 10⁻⁵
= (498.856 × 10⁻⁵)
= (499 × 10⁻⁵) to the appropriate significant figures.
Hope this Helps!!!