1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
4 years ago
6

When the voltage across a steady resistance is doubled, the current?

Physics
1 answer:
natima [27]4 years ago
8 0

I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.

<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know V and I use formula P = IV: P = IV = (100mA)(10V) = 1 W.</span>

The next question is what I'm not sure about:

Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).

What I did initially was: P = IV = (100mA)(2V) = 2 W

But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."

So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.

P = IV = (200mA)(2V) = 4 W

You might be interested in
Why don't you notice your gravitational force on other objects?
mixas84 [53]
The answer is B tell me if I am wrong.
4 0
3 years ago
Read 2 more answers
Explain how the principle of uniformitarianism would help geologists determine the source of a layer of particular igneous rock
HACTEHA [7]

Explanation:

The principle of uniformitarianism was proposed by James Hutton, a Scottish geologist to explain geologic processes and how they relate in space.

According to the principle "the present is the key to the past and geologic process occurring today have occurred in times past. ".

  • Saddled with this knowledge, geologists can understand and unravel how rocks form and how the earth has been sculpted.
  • Today, in some places on earth, we see volcanic activities.
  • Such a place is on the Hawaiian Islands where hot plumes are coming to the surface.
  • In like manner, the lava cools and solidifies to form new volcanic basalt.  
  • Using this knowledge, any geologist can unravel any igneous rock.
  • From the activities in Hawaii, we know that past igneous rocks must have been formed by the cooling and solidification of magma.
  • This the tenet of the uniformitarian principle.

learn more:

Continental drift brainly.com/question/5002949

#learnwithBrainly

8 0
3 years ago
A person, with his ear to the ground, sees a huge stone strike the concrete pavement. A moment later two sounds are heard from t
marishachu [46]

Answer:

The impact occured at a distance of 2478.585 meters from the person.

Explanation:

(After some research on web, we conclude that problem is not incomplete) The element "Part A" may lead to the false idea that question is incomplete. Correct form is presented below:

<em>A person, with his ear to the ground, sees a huge stone strike the concrete pavement. A moment later two sounds are heard from the impact: one travels in the air and the other in the concrete, and they are 6.4 seconds apart. How far away did the impact occur? (Sound speed in the air: 343 meters per second, sound speed in concrete: 3000 meters per second)</em>

Sound is a manifestation of mechanical waves, which needs a medium to propagate themselves. Depending on the material, sound will take more or less time to travel a given distance. From statement, we know this time difference between air and concrete (\Delta t), in seconds:

\Delta t = t_{A}-t_{C} (1)

Where:

t_{C} - Time spent by the sound in concrete, in seconds.

t_{A} - Time spent by the sound in the air, in seconds.

By suposing that sound travels the same distance and at constant speed in both materials, we have the following expression:

\Delta t = \frac{x}{v_{A}}-\frac{x}{v_{C}}

\Delta t = x\cdot \left(\frac{1}{v_{A}}-\frac{1}{v_{C}}  \right)

x = \frac{\Delta t}{\frac{1}{v_{A}}-\frac{1}{v_{C}}  } (2)

Where:

v_{C} - Speed of the sound in concrete, in meters per second.

v_{A} - Speed of the sound in the air, in meters per second.

x - Distance traveled by the sound, in meters.

If we know that \Delta t = 6.4\,s, v_{C} = 3000\,\frac{m}{s} and v_{A} = 343\,\frac{m}{s}, then the distance travelled by the sound is:

x = \frac{\Delta t}{\frac{1}{v_{A}}-\frac{1}{v_{C}}  }

x = 2478.585\,m

The impact occured at a distance of 2478.585 meters from the person.

7 0
3 years ago
A particle P with speed 140 m s–1begins to decelerate uniformly at a certain instant while another particle Q starts from rest 6
Natasha2012 [34]

Answer:

i) The motion of both particles are shown on the same speed-time curve included

ii) Approximately 19.5 seconds

Explanation:

We are given that;

Initial velocity of particle, P = 140 m/s

Start time of particle P = 6 s before start time of particle Q

Position of particle Q when velocity is 25 m/s = 125 m

Therefore, from the equation of motion, we have for particle Q;

v² = u² + 2·a·s

Where:

v = Final velocity = 25 m/s

u = Initial velocity = 0 m/s

a = Acceleration

s = Distance covered = 125 m

Therefore;

25² = 0² + 2×a×125

Which gives a = 25²/(2×125) = 2.5 m/s²

The time taken for particle Q to reach 125 m is found from the relation;

s = u·t + 1/2·a·t²

Where:

t = Time of journey

Therefore;

125 = 0×t + 1/2×2.5×t²

Which gives 125 = 1.25 × t²

Hence, t² = 125/1.25 = 100

t = √(100) = 10 s

The equation for particle Q is v = 0 + 2.5×t

Hence, since particle P starts deceleration 6 seconds before the commencement of motion of particle Q, the amount of seconds after the commencement of deceleration of the first particle P that it takes for particle P to come to rest is found as follows;

Hence, at t = 6 + 10 = 16 seconds particle P speed = 25 m/s

From the equation of motion, for particle P (decelerating) we have

v = u - a·t

Where:

v = 25 m/s

u = 140 m/s

t = 16 s

Hence, 25 = 140 - a×16

∴ 16·a = 140 - 25 = 115

a = 115/16 = 7.1875 m/s²

Therefore, the time it takes before particle P comes to rest is found from the same equation of motion, where v = 0 as follows;

v = u - a·t

0 = 140 - 7.1875 × t

∴7.1875·t = 140

t = 140/7.1875 = 19.48 s ≈ 19.5 seconds.

4 0
3 years ago
When sunlight strikes the side of a building, what form of energy is it<br> transformed to?
algol [13]

Answer:

thermal energy

Explanation:

8 0
3 years ago
Other questions:
  • How much heat is released when 35kg of water freezes?
    15·1 answer
  • Is an atom with one valence electron more reactive than an atom with two electrone? ​
    6·1 answer
  • What energy powers the star throughout its life?
    14·1 answer
  • A girl throws a ball of mass 0.80 kg against a wall. The ball strikes the wall horizontally with a speed of 25 m/s, and it bounc
    11·1 answer
  • Which of the following statements about the nature of electrical charge is FALSE? Positive-positive or negative-negative charges
    5·1 answer
  • What statement is true about the part of the electromagnetic spectrum that is visible to the human eye?
    9·2 answers
  • You describe a friend’s position by including distance, direction, and what other term?
    9·2 answers
  • Student Exploration: Nuclear Decay. Has anyone done a Gizmos lab on this?
    12·1 answer
  • Helppp ASAP!!<br><br> On which section of the track does the car accelerate? Explain
    9·2 answers
  • Please help, im stuck on this question
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!