Answer:
0.07756 m
Explanation:
Given mass of object =0.20 kg
spring constant = 120 n/m
maximum speed = 1.9 m/sec
We have to find the amplitude of the motion
We know that maximum speed of the object when it is in harmonic motion is given by
where A is amplitude and
is angular velocity
Angular velocity is given by
where k is spring constant and m is mass
So 

The correct answer is option C. <span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
</span><span>
Keisha follows the instructions for a demonstration on gas laws.
1. Place a small marshmallow in a large plastic syringe.
2. Cap the syringe tightly.
3. Pull the plunger back to double the volume of gas in the syringe.
Now, this activity is being done at the same temperature, because there is no mention of the temperature change. Thus, when the plunger is pulled back, the volume doubles, so pressure will decrease. Therefore, </span>This is a demonstration of Boyle’s law. As the volume increases, the pressure decreases, and the marshmallow will grow larger.
If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that, the total momentum of an isolated system is constant.
The downward velocity of thes gases is calculated as follows;
v1(m1 + m2) = v2(m2)
305(1000 + 25) = v2(25)
312,625 = 25v2
v2 = 312,625/25
v2 = 12,505 m/s
Thus, If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
Learn more about linear momentum here: brainly.com/question/7538238
Answer:
Explanation:
We need to assume that the density of the concrete is about 2350 Kg/m^3. And using the dimensions of the highway we can calculate the volume of the highway.
