Let us start from considering monochromatic light as an incidence on the film of a thickness t whose material has an index of refraction n determined by their respective properties.
From this point of view part of the light will be reflated and the other will be transmitted to the thin film. That additional distance traveled by the ray that was reflected from the bottom will be twice the thickness of the thin film at the point where the light strikes. Therefore, this relation of phase differences and additional distance can be expressed mathematically as

We are given the second smallest nonzero thickness at which destructive interference occurs.
This corresponds to, m = 2, therefore


The index of refraction of soap is given, then

Combining the results of all steps we get

Rearranging, we find



<h2>
So, the correct answers are:</h2>
Travels in longitudinal waves
Travels most slowly through a gas
Speeds up when temperature is increased
Is caused by vibration
Explanation for correct answers:
Yes, it does travel in longitudinal waves
Yes, sounds weird, but travels faster in the water
Yes, does speed up when temperature is increased
And yes, Is caused by vibration.
<h2>
Wrong answer is:</h2>
Can travel through a vacuum
Explanation for wrong answer:
actually, in space, there is NO sound, because there are no particals for the sound to vibrate with, there's just empty SPACE.
Answer:
60 meters
Explanation:
If you are going 3 meters in a second, and you are traveling for 20 seconds, you have to multiply
3meters/second*20seconds
cross out the seconds and you have
3 meters*20
60 meters
The total number of revolutions made by the wheel
is closest to is 28.2 revolutions. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
The central angle of a circle is 360° or 2π radians.
Therefore
1 radian = (360 degrees)/(2π radians) = 180/π degrees/radian.
4 radians = (4 radians)*(180/π degrees/radian) = 229.18 degrees.
Answer: C. 229.2°