1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
8

When the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0 * 10-4 T. What is the radius of the l

oop?
Physics
1 answer:
Leona [35]3 years ago
5 0

Answer:

ill get back to this question once i get the answer

You might be interested in
The ______ or _______ of matter depends on how much the particles are moving, which depends on the amount of kinetic energy the
Arlecino [84]

Answer:

Temperature or thermal energy.

Explanation:

Conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.

In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.

Hence, the temperature or thermal energy of matter depends on how much the particles are moving, which depends on the amount of kinetic energy the particles possess.​

4 0
3 years ago
What is not changed when work is done by a machine?
den301095 [7]
B) The amount of work done
4 0
3 years ago
Read 2 more answers
Bowling balls are roughly the same size, but come in a variety of weights. Given its official radius of roughly 0.110 m, calcula
velikii [3]

Answer:

6.1328 kg

60.16284 N

Explanation:

r = Radius of ball = 0.11 m

\rho = Density of fluid = 1.1\times 10^3\ kg/m^3 (Assumed)

g = Acceleration due to gravity = 9.81 m/s²

m = Mass of ball

V = Volume of ball = \frac{4}{3}\pi r^3

The weight of the bowling ball will balance the buouyant force

W=F_b\\\Rightarrow mg=V\rho g\\\Rightarrow m=\frac{V\rho g}{g}\\\Rightarrow m=V\rho\\\Rightarrow m=\frac{4}{3}\pi 0.11^3\times 1.1\times 10^3\\\Rightarrow m=6.1328\ kg

The mass of the bowling ball will be 6.1328 kg

Weight will be 6.1328\times 9.81=60.16284\ N

5 0
3 years ago
A laser emits two wavelengths (λ1 = 420 nm; λ2 = 630 nm). When these two wavelengths strike a grating with 450 lines/mm, they pr
Westkost [7]

A) Order of the first laser: 3, order of the second laser: 2

B) The overlap occurs at an angle of 34.9^{\circ}

Explanation:

A)

The formula that gives the position of the maxima (bright fringes) for a diffraction grating is

d sin \theta = m \lambda

where

d is spacing between the lines in the grating

\theta is the angle of the maximum

m is the order of diffraction

\lambda is the wavelength of the light

For laser 1,

d sin \theta = m_1 \lambda_1

For laser 2,

d sin \theta = m_2 \lambda_2

where

\lambda_1 = 420 nm\\\lambda_2 = 630 nm

Since the position of the maxima in the two cases overlaps, then the term d sin \theta on the left is the same for the two cases, therefore we can write:

m_1 \lambda_1 = m_2 \lambda_2\\\frac{m_1}{m_2}=\frac{\lambda_2}{\lambda_1}=\frac{630}{420}=\frac{3}{2}

Therefore:

m_1 = 3

m_2 = 2

B)

In order to find the angle at which the overlap occurs, we use the 1st laser situation:

d sin \theta = m_1 \lambda_1

where:

N = 450 lines/mm = 450,000 lines/m is the number of lines per unit length, so the spacing between the lines is

d=\frac{1}{N}=\frac{1}{450,000}=2.2\cdot 10^{-6} m

m_1 = 3 is the order of the maximum

\lambda_1 = 420 nm = 420\cdot 10^{-9} m is the wavelength of the laser light

Solving for \theta, we find the angle of the maximum:

sin \theta = \frac{m_1 \lambda_1}{d}=\frac{(3)(420\cdot 10^{-9})}{2.2\cdot 10^{-6}}=0.572

So the angle is

\theta=sin^{-1}(0.572)=34.9^{\circ}

Learn more about diffraction:

brainly.com/question/3183125

#LearnwithBrainly

5 0
3 years ago
A typical meteor that hits the earth's upper atmosphere has a mass of only 2.5 g, about the same as a penny, but it is moving at
attashe74 [19]

Answer:

Answer:u=66.67 m/s

Explanation:

Given

mass of meteor m=2.5 gm\approx 2.5\times 10^{-3} kg

velocity of meteor v=40km/s \approx 40000 m/s

Kinetic Energy of Meteor

K.E.=\frac{mv^2}{2}

K.E.=\frac{2.5\times 10^{-3}\times (4000)^2}{2}

K.E.=2\times 10^6 J

Kinetic Energy of Car

=\frac{1}{2}\times Mu^2

=\frac{1}{2}\times 900\times u^2

\frac{1}{2}\times 900\times u^2=2\times 10^6  

900\times u^2=4\times 10^6

u^2=\frac{4}{9}\times 10^4

u=\frac{2}{3}\times 10^2

u=66.67 m/s

8 0
3 years ago
Other questions:
  • When a boat is floating on a lake, the buoyant force on the boat is equal to:
    10·2 answers
  • A satellite moves in a circular earth orbit that has a radius of 7.49 x 106 m. A model airplane is flying on a 24.1-m guideline
    15·1 answer
  • A swimmer swims 1000 m in the pool in 8.6 minutes. What was the average speed of the swimmer in m/s?
    11·2 answers
  • A student of mass 63.4 kg, starting at rest, slides down a slide 21.2 m long, tilted at an angle of 26.1° with respect to thehor
    11·1 answer
  • A 20 kg box on a horizontal frictionless surface is moving to the right at a speed of 4.0 m/s. The box hits and remains attached
    11·1 answer
  • The specific gravity of a substance is given by G = DS/DW, where DS is the density of the substance in kg/m3 and DW is the densit
    7·1 answer
  • If the earth shrank until its radius were only one-quarter its present size without changing its mass what would a 20 n object w
    11·1 answer
  • A moving car has 2000 J of kinetic energy. If the speed doubles, how much kinetic energy would it have?
    13·1 answer
  • A father (75 kg) was standing watching TV, minding his own business when one of his kids (20 kg) approached him at 2m/s heading
    15·1 answer
  • A softball pitcher throws a softball to a catcher behind home plate. the softball is 3 feet above the ground when it leaves the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!